Assumptions for Regression Analysis

Mgmt 230: Introductory Statistics

1

Goals of this section

- Learn about the assumptions behind OLS estimation.
- Learn how to evaluate the validity of these assumptions.
- Introduce how to handle cases where the assumptions may be violated.

Assumptions behind OLS

Your textbook says the four assumptions behind valid OLS estimation are:

1. Linearity.
2. Independence of error term. ← not completely necessary.
3. Normality of the error terms ϵ_i. ← not true.
4. Stationary variance of ϵ_i. ← not completely necessary.

Your textbook fails to mention some very important assumptions:

- The explanatory variables must be independent of the error term.
- The explanatory variables must be stationary. Often not true in financial and economics.

Linearity

- Linear model must be an accurate description of the true relationship between the variables.

$$ y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + ... + \beta_{k-1,i} x_{k-1,i} + \epsilon_i $$

- Evaluating Linearity:
 - Scatter plot with a trend line.
 - Scatter plot of the residuals.
Linearity

- Quadratic relationship. \(y_i \) increases as \(x_i \) increases, but then decreases (or vice versa).
 - To account for this possibility, also put \(x_i^2 \) into the model.
 - Example: worker productivity and age.

- Exponential relationship. \(y_i \) increases as \(x_i \) increases, but at an increasing rate.
 - To account for this possibility, put \(e^{x_i} \) into the model instead of \(x_i \).
 - Example: Total costs and total output.

- Logarithmic relationship. \(y_i \) increases as \(x_i \) increases, but at a decreasing rate.
 - To account for this possibility, put \(\ln(x_i) \) into the model instead of \(x_i \).
 - A quadratic relationship may appropriately capture this relationship as well.
 - Example: earnings and experience.

Independence of error term

- This assumption states that an error from one observation (\(\epsilon_i \)) is independent of the error from another observation (\(\epsilon_j \)).
- This often happens in financial and economic time series data.
- Satisfying this assumption is not necessary for OLS results to be consistent. But, better methods than OLS are possible.
- **Consistency:** An estimate is consistent if as the sample size gets very large, the sample estimates for the coefficients approach the true population coefficients.
- If the residuals are not independent, this most likely indicates you misspecified the model (i.e. linearity assumption is violated).

Normality of error term

- Why was the central limit theorem so cool?
- Correct assumption: the sample size is sufficiently large or the population error term is normally distributed.
- If this assumption holds:
The sampling distribution of the estimates for the coefficients (b’s) will be normal.

The residuals will be normal.

- Forget about rules of thumb like $n > 30$ for regression.
- To evaluate if this assumption holds, can do a histogram of the residuals.

Stationary variance

- The population error term should have a constant variance.
- The variance should not increase as x_i increases.
- This often happens with data related to income or wealth.
 - Suppose you are predicting how much people spend on luxury goods.
 - Larger errors are going to be made for people with larger incomes.

- Satisfying this assumption is not necessary for consistency, although better methods than OLS exist for estimating models with this problem.
- To evaluate if this assumption holds, do a scatter plot of the residuals on the y-axis, and the x variable on the x-axis.

Independence of explanatory variables

- For consistent and unbiased results, the X variables must be independent of the population error term (ϵ_i).
- That is, the errors made in the regression cannot be related to your variables.
- Omitted variable bias: when there are possible explanatory variables (that may not even be measurable) not included in the regression that are correlated with the included explanatory variables.
- The error term accounts for anything not included in the regression.

Stationary Explanatory Variables

- The explanatory variables must be stationary.
- Economics and time series data are often not stationary, rather they grow as time goes on.
- Examples: GDP, income, price level, wages.
- It can be very tough to handle this problem.