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Note on required packages: The following code requires the packages in the tidyverse. The tidyverse
contains many packages that allow you to organize, summarize, and plot data. If you have not already done
so, download and install the libraries (needed only once per computer), and load the libraries (need to do
every time you start R) with the following code:

install.packages("tidyverse") # This only needs to be executed once for your machine

library("tidyverse") # This needs to be executed every time you load R

1. Regression Equation

A simple linear regression (also known as a bivariate regression) is a linear equation describing the
relationship between an explanatory variable and an outcome variable, specifically with the assumption
that the explanatory variable influences the outcome variable, and not vice-versa.

Example: Let yi denote the income of some individual in your sample indexed by i where i ∈ {1, 2, .., n},
let xi denote the number of years of education of the same individual, and let n denote the sample size. A
simple linear regression equation of these two variables in the sample takes the form,

yi = b0 + b1xi + ei

where b1 is the sample estimate of the slope of the regression line with respect to years of education and b0 is
the sample estimate for the vertical intercept of the regression line.

The term ei is residual, or the error term in regression. Since we would not expect education to exactly
predict income, not all data points in a sample will line up exactly on the regression line. For some individual
i ∈ {1, 2, .., n} in the sample, ei is the difference between his or her actual income and the predicted level of
income on line based on the person’s actual education attainment.

The point on the regression equation line is the predicted value for yi given some value for xi. The predicted
value from an estimated regression is given by,

ŷi = b0 + b1xi.

Since some actual values for yi will be above the regression line and some will be below, some ei will be
positive and others will be negative. The best fitting regression line is one such that the positive values exactly
offset the negative values so that the mean of the residuals equals zero:

1
n

n∑
i=1

ei = 0
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To minimize the error that the regression line makes, the coefficients for the best fitting regression line are
chosen to minimize the sum of the squared residuals:

{b0, b1} = min
b0,b1

n∑
i=1

e2
i

= min
b0,b1

n∑
i=1

(yi − ŷi)2

= min
b0,b1

n∑
i=1

(yi − b0 − b1xi)2

This standard method for estimating regression coefficients by minimizing the sum of squared residuals is
called the ordinary least squares (OLS) method.

Interpreting slope: Since b1 is the slope, it measures how much the y-variable changes when the x-variable
increases by one unit. In this case, b1 is the estimate for on average how much additional income one earns
for each additional year of education.

Interpreting intercept: Depending on the application, the vertical intercept sometimes has a useful intuitive
meaning and sometimes it does not. It measures what value to be expected for the y-variable when the
x-variable is equal to zero. In this case, b0 is the measure for the average income to be expected for individuals
with zero years of education. If your data does not include any observations with a zero value for education,
or if a zero value for the x-variable is unrealistic, then this coefficient has little meaning.

The regression line above is a sample estimate of the population regression line. The population regression
line is the best fitting line for all possible elements in the population and whose coefficients are generally
unknown. The population regression equation is given by,

yi = β0 + β1xi + εi,

where b0 above is a sample estimate of the population coefficient β0 and b1 above is a sample estimate of the
population coefficient β1.

2. Download and Visualize the Data

The code below downloads a CSV file that includes data from 1980 for 935 individuals on variables including
their total monthly earnings (MonthlyEarnings) and a number of variables that could influence income,
including years of education (YearsEdu). The data set originally comes from textbook website for Stock and
Watson’s Introduction to Econometrics.
wages <- read.csv("http://murraylax.org/datasets/wage2.csv");

Let us begin by plotting the data to visually examine the relationship between years of schooling and monthly
earnings. The code below produces a scatter plot with YearsEdu on the horizontal axis and MonthlyEarnings
on the vertical axes.
ggplot(data=wages, mapping=aes(x=YearsEdu, y=MonthlyEarnings)) +

geom_point() +
labs(title="Monthly Earnings Versus Years of Education",

x="Years of Education",
y="Monthly Earnings")
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In the first line above, we call the ggplot() function and set the data and aesthetic layers of the graph. We
define the data layer by seeting the parameter data equal to the wages data frame. We define the aesthetics
layer with the mapping parameter. We create a mapping with a call to the aes() function and map YearsEdu
to the x-axis and MonthlyEarnings to the y-axis.

We add the geometery layer in the second line with a call to geom_point(). This creates a plot with points
on it.

Finally, we add descriptive labels to the x and y axes and the title with the labs() function.

The scatter plot looks a little peculiar because the explanatory variable, years of education, consists only of
a finite number of integers. When so many observations have the exact same value, they line up vertically
and tightly with heavy overlap. This makes it difficult to see the relationship in the scatter plot. This is a
problem called overplotting.

One way to solve the overplotting problem is to alter the position of the points in the geometry layer with
jittering. Jittering randomly shuffles around the points, making it easier to see all the points that are in one
tight area. Generally, you want to make sure that when you jitter points that you do not shuffle them out
too far, so as to end aligning with different points on the x-axis or y-axis scales.

In the code below, we create the plot again, this time setting the parameter position=jitter in the
geom_point() function.
ggplot(data=wages, mapping=aes(x=YearsEdu, y=MonthlyEarnings)) +

geom_point(position="jitter") +
labs(title="Monthly Earnings Versus Years of Education",

x="Years of Education",
y="Monthly Earnings")
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3. Estimating the Regression Equation

We estimate the regression line with the R function lm(), which stands for linear model. We estimate the
regression line in the code that follows and assign the output to a object we call edulm.
edulm <- lm(MonthlyEarnings ~ YearsEdu, data=wages)

We passed to lm() a single parameter that was the formula, wages$MonthlyEarnings ~ wages$YearsEdu
which told lm() to estimate a linear model for how monthly earnings depends on years of education.

The object edulm is a list of many other objects that includes many summary statistics, hypothesis tests, and
confidence intervals regarding the equation of the best fit line. For the moment, let us examine the estimates
of the coefficients. We can view these by accessing the estimate object within edulm:
edulm$coefficients

## (Intercept) YearsEdu
## 146.95244 60.21428

These results imply the equation for the best fitting line is given by,

yi = 146.95 + 60.21xi + ei,

and the predicted value for monthly earnings for person i with xi years of education is given by,

ŷi = 146.95 + 60.21xi.

We can add an estimated linear regression line to our scatter plot with another geometry layer (which also
creates a statistics layer). In the code that follows, we recreate the code for the scatter plot above and we
add a visual of the regression line with a call to geom_smooth()

ggplot(data=wages, mapping=aes(x=YearsEdu, y=MonthlyEarnings)) +
geom_point(position="jitter") +
labs(title="Monthly Earnings Versus Years of Education",

x="Years of Education",
y="Monthly Earnings") +

geom_smooth(method="lm")
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In the geom_smooth() function call, we set the parameter method="lm" to create a linear regression line.
The shaded area surrounding the line represents a 95% confidence interval for the estimated regression line.
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