# Sampling Design

BUS 230: Business Research and Communication

- Goals of this chapter:
  - Learn methods for obtaining samples from populations.
  - Learn biases that can occur when using non-probability approaches.
- Learning objectives:
  - LO2: Recognize and use the appropriate techniques to collect or use survey data to address a research problem.
  - LO2.C: Identify sources of respondent and administrative error and develop the ability to construct and administer a survey instrument that minimizes these errors.

- Goals of this chapter:
  - Learn methods for obtaining samples from populations.
  - Learn biases that can occur when using non-probability approaches.
- Learning objectives:
  - LO2: Recognize and use the appropriate techniques to collect or use survey data to address a research problem.
  - LO2.C: Identify sources of respondent and administrative error and develop the ability to construct and administer a survey instrument that minimizes these errors.

- Example: Every three months the Gallop poll attempts to discover the top financial concerns of households in the United States.
- Population: All U.S. households.
- Identifies top financial concerns in their sample, reports what percentage of households list each as one of their top concerns.
- With 95% confidence, report the percentages for all U.S. households within a 3% margin of error.
- Survey only 1000 households.
- Any doubters? Any concerns?



- Example: Every three months the Gallop poll attempts to discover the top financial concerns of households in the United States.
- Population: All U.S. households.
- Identifies top financial concerns in their sample, reports what percentage of households list each as one of their top concerns.
- With 95% confidence, report the percentages for all U.S. households within a 3% margin of error.
- Survey only 1000 households.
- Any doubters? Any concerns?



- Example: Every three months the Gallop poll attempts to discover the top financial concerns of households in the United States.
- Population: All U.S. households.
- Identifies top financial concerns in their sample, reports what percentage of households list each as one of their top concerns.
- With 95% confidence, report the percentages for all U.S. households within a 3% margin of error.
- Survey only 1000 households.
- Any doubters? Any concerns?



- Example: Every three months the Gallop poll attempts to discover the top financial concerns of households in the United States.
- Population: All U.S. households.
- Identifies top financial concerns in their sample, reports what percentage of households list each as one of their top concerns.
- With 95% confidence, report the percentages for all U.S. households within a 3% margin of error.
- Survey only 1000 households.
- Any doubters? Any concerns?



- Example: Every three months the Gallop poll attempts to discover the top financial concerns of households in the United States.
- Population: All U.S. households.
- Identifies top financial concerns in their sample, reports what percentage of households list each as one of their top concerns.
- With 95% confidence, report the percentages for all U.S. households within a 3% margin of error.
- Survey only 1000 households.
- Any doubters? Any concerns?



- Example: Every three months the Gallop poll attempts to discover the top financial concerns of households in the United States.
- Population: All U.S. households.
- Identifies top financial concerns in their sample, reports what percentage of households list each as one of their top concerns.
- With 95% confidence, report the percentages for all U.S. households within a 3% margin of error.
- Survey only 1000 households.
- Any doubters? Any concerns?



# Population Versus Sample

- Statistics: the study of how to use data to answer interesting questions.
- **Population**: the complete collection of all elements to be
- Census: collection of data that includes every member of the
- Sample: a collection of data from a subset of members from
- Statistics: method of using sample data to make statements

- Statistics: the study of how to use data to answer interesting questions.
- Population: the complete collection of all elements to be studied.
- Census: collection of data that includes every member of the population.
- Sample: a collection of data from a subset of members from a population.
- **Statistics**: method of using *sample data* to make *statements* or inferences about a population.
  - Confidence intervals: statements concerning the degree of confidence and margin of error.
  - Hypothesis testing: using sample estimates and margins of errors to test statements about the population.

- Statistics: the study of how to use data to answer interesting questions.
- Population: the complete collection of all elements to be studied.
- Census: collection of data that includes every member of the population.
- Sample: a collection of data from a subset of members from a population.
- **Statistics**: method of using *sample data* to make *statements* or inferences about a population.
  - Confidence intervals: statements concerning the degree of confidence and margin of error.
  - Hypothesis testing: using sample estimates and margins of errors to test statements about the population.

- Statistics: the study of how to use data to answer interesting questions.
- Population: the complete collection of all elements to be studied.
- Census: collection of data that includes every member of the population.
- Sample: a collection of data from a subset of members from a population.
- **Statistics**: method of using *sample data* to make *statements* or inferences about a population.
  - Confidence intervals: statements concerning the degree of confidence and margin of error.
  - Hypothesis testing: using sample estimates and margins of errors to test statements about the population.

- Statistics: the study of how to use data to answer interesting questions.
- Population: the complete collection of all elements to be studied.
- Census: collection of data that includes every member of the population.
- Sample: a collection of data from a subset of members from a population.
- **Statistics**: method of using *sample data* to make *statements* or inferences about a population.
  - Confidence intervals: statements concerning the degree of confidence and margin of error.
  - Hypothesis testing: using sample estimates and margins of errors to test statements about the population.



- Statistics: the study of how to use data to answer interesting questions.
- Population: the complete collection of all elements to be studied.
- Census: collection of data that includes every member of the population.
- Sample: a collection of data from a subset of members from a population.
- **Statistics**: method of using *sample data* to make *statements* or inferences about a population.
  - Confidence intervals: statements concerning the degree of confidence and margin of error.
  - Hypothesis testing: using sample estimates and margins of errors to test statements about the population.

- Statistics: the study of how to use data to answer interesting questions.
- Population: the complete collection of all elements to be studied.
- Census: collection of data that includes every member of the population.
- Sample: a collection of data from a subset of members from a population.
- **Statistics**: method of using *sample data* to make *statements* or inferences about a population.
  - Confidence intervals: statements concerning the degree of confidence and margin of error.
  - Hypothesis testing: using sample estimates and margins of errors to test statements about the population.

- Sampling technique when every member of the population has an equal probability of being selected into a sample.
- Implies sample should be representative of population (on average, by random chance it may not be).
- Even with an infinitely large sample, statistical theory can generate the accuracy seen in the Gallop poll in a sample as small as 1000 elements.

- Did the sampling method truly allow all elements of the population an equal chance of being selected?
- Did the sampling method allow all subgroups a fair chance of being represented?
- All age groups? all racial and ethnic groups? all income groups?

- Sampling technique when every member of the population has an equal probability of being selected into a sample.
- Implies sample should be representative of population (on average, by random chance it may not be).
- Even with an infinitely large sample, statistical theory can generate the accuracy seen in the Gallop poll in a sample as small as 1000 elements.

- Did the sampling method truly allow all elements of the population an equal chance of being selected?
- Did the sampling method allow all subgroups a fair chance of being represented?
- All age groups? all racial and ethnic groups? all income groups?

- Sampling technique when every member of the population has an equal probability of being selected into a sample.
- Implies sample should be representative of population (on average, by random chance it may not be).
- Even with an infinitely large sample, statistical theory can generate the accuracy seen in the Gallop poll in a sample as small as 1000 elements.

- Did the sampling method truly allow all elements of the population an equal chance of being selected?
- Did the sampling method allow all subgroups a fair chance of being represented?
- All age groups? all racial and ethnic groups? all income groups?

- Sampling technique when every member of the population has an equal probability of being selected into a sample.
- Implies sample should be representative of population (on average, by random chance it may not be).
- Even with an infinitely large sample, statistical theory can generate the accuracy seen in the Gallop poll in a sample as small as 1000 elements.

- Did the sampling method truly allow all elements of the population an equal chance of being selected?
- Did the sampling method allow all subgroups a fair chance of being represented?
- All age groups? all racial and ethnic groups? all income groups?

- Sampling technique when every member of the population has an equal probability of being selected into a sample.
- Implies sample should be representative of population (on average, by random chance it may not be).
- Even with an infinitely large sample, statistical theory can generate the accuracy seen in the Gallop poll in a sample as small as 1000 elements.

- Did the sampling method truly allow all elements of the population an equal chance of being selected?
- Did the sampling method allow all subgroups a fair chance of being represented?
- All age groups? all racial and ethnic groups? all income groups?

- Sampling technique when every member of the population has an equal probability of being selected into a sample.
- Implies sample should be representative of population (on average, by random chance it may not be).
- Even with an infinitely large sample, statistical theory can generate the accuracy seen in the Gallop poll in a sample as small as 1000 elements.

- Did the sampling method truly allow all elements of the population an equal chance of being selected?
- Did the sampling method allow all subgroups a fair chance of being represented?
- All age groups? all racial and ethnic groups? all income groups?

- Sampling technique when every member of the population has an equal probability of being selected into a sample.
- Implies sample should be representative of population (on average, by random chance it may not be).
- Even with an infinitely large sample, statistical theory can generate the accuracy seen in the Gallop poll in a sample as small as 1000 elements.

- Did the sampling method truly allow all elements of the population an equal chance of being selected?
- Did the sampling method allow all subgroups a fair chance of being represented?
- All age groups? all racial and ethnic groups? all income groups?

- Sampling technique when every member of the population has an equal probability of being selected into a sample.
- Implies sample should be representative of population (on average, by random chance it may not be).
- Even with an infinitely large sample, statistical theory can generate the accuracy seen in the Gallop poll in a sample as small as 1000 elements.

- Did the sampling method truly allow all elements of the population an equal chance of being selected?
- Did the sampling method allow all subgroups a fair chance of being represented?
- All age groups? all racial and ethnic groups? all income groups?

- Aka "working population," list of elements from which a sample will be drawn.
- Example Population: UW-L undergraduate students.
- Sampling frame: E-mail directory of UW-L students constructed week before Fall 2011 semester.

- When sampling frame creates errors in generating samples.
- Some members of population are excluded from the sampling frame, or.
- Sampling frame includes members which are not part of the population, or..
- Sampling frame inadvertently alters the probabilities in which sample elements are chosen.

- Aka "working population," list of elements from which a sample will be drawn.
- Example Population: UW-L undergraduate students
- Sampling frame: E-mail directory of UW-L students constructed week before Fall 2011 semester.

- When sampling frame creates errors in generating samples.
- Some members of population are excluded from the sampling frame, or
- Sampling frame includes members which are not part of the population or..
- Sampling frame inadvertently alters the probabilities in which sample elements are chosen.

- Aka "working population," list of elements from which a sample will be drawn.
- Example Population: UW-L undergraduate students.
- Sampling frame: E-mail directory of UW-L students constructed week before Fall 2011 semester.

- When sampling frame creates errors in generating samples.
- Some members of population are excluded from the sampling frame, or
- Sampling frame includes members which are not part of the population or..
- Sampling frame inadvertently alters the probabilities in which sample elements are chosen.

5/19

## Sampling Frame

- Aka "working population," list of elements from which a sample will be drawn.
- Example Population: UW-L undergraduate students.
- Sampling frame: E-mail directory of UW-L students constructed week before Fall 2011 semester.

- When sampling frame creates errors in generating samples.
- Some members of population are excluded from the sampling frame, or
- Sampling frame includes members which are not part of the population, or...
- Sampling frame inadvertently alters the probabilities in which sample elements are chosen.

- Aka "working population," list of elements from which a sample will be drawn.
- Example Population: UW-L undergraduate students.
- Sampling frame: E-mail directory of UW-L students constructed week before Fall 2011 semester.

- When sampling frame creates errors in generating samples.
- Some members of population are excluded from the sampling frame, or.
- Sampling frame includes members which are not part of the population, or..
- Sampling frame inadvertently alters the probabilities in which sample elements are chosen.

- Aka "working population," list of elements from which a sample will be drawn.
- Example Population: UW-L undergraduate students.
- Sampling frame: E-mail directory of UW-L students constructed week before Fall 2011 semester.

- When sampling frame creates errors in generating samples.
- Some members of population are excluded from the sampling frame, or.
- Sampling frame includes members which are not part of the population, or..
- Sampling frame inadvertently alters the probabilities in which sample elements are chosen.

- Aka "working population," list of elements from which a sample will be drawn.
- Example Population: UW-L undergraduate students.
- Sampling frame: E-mail directory of UW-L students constructed week before Fall 2011 semester.

- When sampling frame creates errors in generating samples.
- Some members of population are excluded from the sampling frame, or..
- Sampling frame includes members which are not part of the population, or..
- Sampling frame inadvertently alters the probabilities in which sample elements are chosen.

- Aka "working population," list of elements from which a sample will be drawn.
- Example Population: UW-L undergraduate students.
- Sampling frame: E-mail directory of UW-L students constructed week before Fall 2011 semester.

- When sampling frame creates errors in generating samples.
- Some members of population are excluded from the sampling frame, or..
- Sampling frame includes members which are not part of the population, or..
- Sampling frame inadvertently alters the probabilities in which sample elements are chosen.

5/19

## Sampling Frame

- Aka "working population," list of elements from which a sample will be drawn.
- Example Population: UW-L undergraduate students.
- Sampling frame: E-mail directory of UW-L students constructed week before Fall 2011 semester.

- When sampling frame creates errors in generating samples.
- Some members of population are excluded from the sampling frame, or..
- Sampling frame includes members which are not part of the population, or..
- Sampling frame inadvertently alters the probabilities in which sample elements are chosen.

# UW-L Student Example:

- Some people on the e-mail list may have dropped out of UW-L.
- Some e-mail addresses may have a typo.
- Some e-mail boxes may be full.

## Potential Voters for next election:

- Sampling frame: voter registration database
- Some potential voters may not have registered yet.
- Some potential voters may have moved.

- UW-L Student Example:
  - Some people on the e-mail list may have dropped out of UW-L.
  - Some e-mail addresses may have a typo.
  - Some e-mail boxes may be full.
- Potential Voters for next election:
  - Sampling frame: voter registration database
  - Some potential voters may not have registered yet
  - Some potential voters may have moved.

- UW-L Student Example:
  - Some people on the e-mail list may have dropped out of UW-L.
  - Some e-mail addresses may have a typo.
  - Some e-mail boxes may be full.
- Potential Voters for next election:
  - Sampling frame: voter registration database
  - Some potential voters may not have registered yet
  - Some potential voters may have moved.

- UW-L Student Example:
  - Some people on the e-mail list may have dropped out of UW-L.
  - Some e-mail addresses may have a typo.
  - Some e-mail boxes may be full.
- Potential Voters for next election:
  - Sampling frame: voter registration database
  - Some potential voters may not have registered yet
  - Some potential voters may have moved.

- UW-L Student Example:
  - Some people on the e-mail list may have dropped out of UW-L.
  - Some e-mail addresses may have a typo.
  - Some e-mail boxes may be full.
- Potential Voters for next election:
  - Sampling frame: voter registration database.
  - Some potential voters may not have registered yet.
  - Some potential voters may have moved.

- UW-L Student Example:
  - Some people on the e-mail list may have dropped out of UW-L.
  - Some e-mail addresses may have a typo.
  - Some e-mail boxes may be full.
- Potential Voters for next election:
  - Sampling frame: voter registration database.
  - Some potential voters may not have registered yet.
  - Some potential voters may have moved.

- UW-L Student Example:
  - Some people on the e-mail list may have dropped out of UW-L.
  - Some e-mail addresses may have a typo.
  - Some e-mail boxes may be full.
- Potential Voters for next election:
  - Sampling frame: voter registration database.
  - Some potential voters may not have registered yet.
  - Some potential voters may have moved.

- UW-L Student Example:
  - Some people on the e-mail list may have dropped out of UW-L.
  - Some e-mail addresses may have a typo.
  - Some e-mail boxes may be full.
- Potential Voters for next election:
  - Sampling frame: voter registration database.
  - Some potential voters may not have registered yet.
  - Some potential voters may have moved.

- Multi-stage sampling: when the means of taking a sample is broken into stages.
- Example: population = airline passengers.
  - Stage 1: Select airline companies.
  - Stage 2: Select major hub airports.
  - Stage 3: Select dates to gather data.
  - Stage 4: Select individual flights from each selected airline airport, for a given date.
  - Stage 5: Survey everyone on the selected flights
- Sampling unit: element or group of elements that is selected to a sample.
  - Above example: airline flight
  - Simple random sampling: individual flier, individual member of population.
- Categories in each stage also referred to as a "sampling unit."



- Multi-stage sampling: when the means of taking a sample is broken into stages.
- Example: population = airline passengers.
  - Stage 1: Select airline companies.
  - Stage 2: Select major hub airports.
  - Stage 3: Select dates to gather data.
  - Stage 4: Select individual flights from each selected airline, airport, for a given date.
  - Stage 5: Survey everyone on the selected flights.
- Sampling unit: element or group of elements that is selected to a sample.
  - Above example: airline flight
  - Simple random sampling: individual flier, individual member of population.
- Categories in each stage also referred to as a "sampling unit."



- Multi-stage sampling: when the means of taking a sample is broken into stages.
- Example: population = airline passengers.
  - Stage 1: Select airline companies.
  - Stage 2: Select major hub airports.
  - Stage 3: Select dates to gather data.
  - Stage 4: Select individual flights from each selected airline, airport, for a given date.
  - Stage 5: Survey everyone on the selected flights.
- **Sampling unit:** element or group of elements that is selected to a sample.
  - Above example: airline flight
  - Simple random sampling: individual flier, individual member of population.
- Categories in each stage also referred to as a "sampling unit."



- Multi-stage sampling: when the means of taking a sample is broken into stages.
- Example: population = airline passengers.
  - Stage 1: Select airline companies.
  - Stage 2: Select major hub airports.
  - Stage 3: Select dates to gather data.
  - Stage 4: Select individual flights from each selected airline, airport, for a given date.
  - Stage 5: Survey everyone on the selected flights.
- Sampling unit: element or group of elements that is selected to a sample.
  - Above example: airline flight
  - Simple random sampling: individual flier, individual member of population.
- Categories in each stage also referred to as a "sampling unit."



- Multi-stage sampling: when the means of taking a sample is broken into stages.
- Example: population = airline passengers.
  - Stage 1: Select airline companies.
  - Stage 2: Select major hub airports.
  - Stage 3: Select dates to gather data.
  - Stage 4: Select individual flights from each selected airline, airport, for a given date.
  - Stage 5: Survey everyone on the selected flights.
- **Sampling unit:** element or group of elements that is selected to a sample.
  - Above example: airline flight
  - Simple random sampling: individual flier, individual member of population.
- Categories in each stage also referred to as a "sampling unit."



- Multi-stage sampling: when the means of taking a sample is broken into stages.
- Example: population = airline passengers.
  - Stage 1: Select airline companies.
  - Stage 2: Select major hub airports.
  - Stage 3: Select dates to gather data.
  - Stage 4: Select individual flights from each selected airline, airport, for a given date.
  - Stage 5: Survey everyone on the selected flights.
- Sampling unit: element or group of elements that is selected to a sample.
  - Above example: airline flight
  - Simple random sampling: individual flier, individual member of population.
- Categories in each stage also referred to as a "sampling unit."

- Multi-stage sampling: when the means of taking a sample is broken into stages.
- Example: population = airline passengers.
  - Stage 1: Select airline companies.
  - Stage 2: Select major hub airports.
  - Stage 3: Select dates to gather data.
  - Stage 4: Select individual flights from each selected airline, airport, for a given date.
  - Stage 5: Survey everyone on the selected flights.
- Sampling unit: element or group of elements that is selected to a sample.
  - Above example: airline flight
  - Simple random sampling: individual flier, individual member of population.
- Categories in each stage also referred to as a "sampling unit."

- Multi-stage sampling: when the means of taking a sample is broken into stages.
- Example: population = airline passengers.
  - Stage 1: Select airline companies.
  - Stage 2: Select major hub airports.
  - Stage 3: Select dates to gather data.
  - Stage 4: Select individual flights from each selected airline, airport, for a given date.
  - Stage 5: Survey everyone on the selected flights.
- Sampling unit: element or group of elements that is selected to a sample.
  - Above example: airline flight.
  - Simple random sampling: individual flier, individual member of population.
- Categories in each stage also referred to as a "sampling unit."

- Multi-stage sampling: when the means of taking a sample is broken into stages.
- Example: population = airline passengers.
  - Stage 1: Select airline companies.
  - Stage 2: Select major hub airports.
  - Stage 3: Select dates to gather data.
  - Stage 4: Select individual flights from each selected airline, airport, for a given date.
  - Stage 5: Survey everyone on the selected flights.
- **Sampling unit:** element or group of elements that is selected to a sample.
  - Above example: airline flight.
  - Simple random sampling: individual flier, individual member of population.
- Categories in each stage also referred to as a "sampling unit."

- Multi-stage sampling: when the means of taking a sample is broken into stages.
- Example: population = airline passengers.
  - Stage 1: Select airline companies.
  - Stage 2: Select major hub airports.
  - Stage 3: Select dates to gather data.
  - Stage 4: Select individual flights from each selected airline, airport, for a given date.
  - Stage 5: Survey everyone on the selected flights.
- Sampling unit: element or group of elements that is selected to a sample.
  - Above example: airline flight.
  - Simple random sampling: individual flier, individual member of population.
- Categories in each stage also referred to as a "sampling unit."

- Multi-stage sampling: when the means of taking a sample is broken into stages.
- Example: population = airline passengers.
  - Stage 1: Select airline companies.
  - Stage 2: Select major hub airports.
  - Stage 3: Select dates to gather data.
  - Stage 4: Select individual flights from each selected airline, airport, for a given date.
  - Stage 5: Survey everyone on the selected flights.
- Sampling unit: element or group of elements that is selected to a sample.
  - Above example: airline flight.
  - Simple random sampling: individual flier, individual member of population.
- Categories in each stage also referred to as a "sampling unit."



- Random sampling error: difference between sample statistic and population parameter.
- Unbiased error.
- Decreases with larger sample sizes.
- Easy to estimate the size of the error.
- We use the estimate of the error to construct confidence intervals, hypothesis tests.

- Random sampling error: difference between sample statistic and population parameter.
- Unbiased error.
- Decreases with larger sample sizes.
- Easy to estimate the size of the error.
- We use the estimate of the error to construct confidence intervals, hypothesis tests.

- Random sampling error: difference between sample statistic and population parameter.
- Unbiased error.
- Decreases with larger sample sizes.
- Easy to estimate the size of the error.
- We use the estimate of the error to construct confidence intervals, hypothesis tests.

- Random sampling error: difference between sample statistic and population parameter.
- Unbiased error.
- Decreases with larger sample sizes.
- Easy to estimate the size of the error.
- We use the estimate of the error to construct confidence intervals, hypothesis tests.

- Random sampling error: difference between sample statistic and population parameter.
- Unbiased error.
- Decreases with larger sample sizes.
- Easy to estimate the size of the error.
- We use the estimate of the error to construct confidence intervals, hypothesis tests.

- Systematic sampling error: errors that are not due to chance, but are due to flaws in the way the sample is drawn.
- Size of the error cannot be estimated.
- Causes bias, cannot be estimated.
- Similar to biases caused by self-selection, poorly constructed survey questions.
- This bias is caused by the sampling frame.

- Systematic sampling error: errors that are not due to chance, but are due to flaws in the way the sample is drawn.
- Size of the error cannot be estimated.
- Causes bias, cannot be estimated.
- Similar to biases caused by self-selection, poorly constructed survey questions.
- This bias is caused by the sampling frame.

- Systematic sampling error: errors that are not due to chance, but are due to flaws in the way the sample is drawn.
- Size of the error cannot be estimated.
- Causes bias, cannot be estimated.
- Similar to biases caused by self-selection, poorly constructed survey questions.
- This bias is caused by the sampling frame.

- Systematic sampling error: errors that are not due to chance, but are due to flaws in the way the sample is drawn.
- Size of the error cannot be estimated.
- Causes bias, cannot be estimated.
- Similar to biases caused by self-selection, poorly constructed survey questions.
- This bias is caused by the sampling frame.

- Systematic sampling error: errors that are not due to chance, but are due to flaws in the way the sample is drawn.
- Size of the error cannot be estimated.
- Causes bias, cannot be estimated.
- Similar to biases caused by self-selection, poorly constructed survey questions.
- This bias is caused by the sampling frame.

- Mail surveys: it has been found that people with more education are more likely to fill out mail survey forms than people with less education.
  - End up with a sample with a higher average level of education than the population.
  - What if your outcome variable is related to education attainment?
  - Willingness to buy a product, financial concerns, etc.
- Telephone surveys:
  - Do those with unlisted numbers, or on "do-not-call lists" have shared characteristics related to the outcome?
  - Do people with only mobile phones have shared characteristics related to the outcome?

- Mail surveys: it has been found that people with more education are more likely to fill out mail survey forms than people with less education.
  - End up with a sample with a higher average level of education than the population.
  - What if your outcome variable is related to education attainment?
  - Willingness to buy a product, financial concerns, etc.
- Telephone surveys:
  - Do those with unlisted numbers, or on "do-not-call lists" have shared characteristics related to the outcome?
  - Do people with only mobile phones have shared characteristics related to the outcome?



## **Examples of Systematic Error**

- Mail surveys: it has been found that people with more education are more likely to fill out mail survey forms than people with less education.
  - End up with a sample with a higher average level of education than the population.
  - What if your outcome variable is related to education attainment?
  - Willingness to buy a product, financial concerns, etc.
- Telephone surveys:
  - Do those with unlisted numbers, or on "do-not-call lists" have shared characteristics related to the outcome?
  - Do people with only mobile phones have shared characteristics related to the outcome?



- Mail surveys: it has been found that people with more education are more likely to fill out mail survey forms than people with less education.
  - End up with a sample with a higher average level of education than the population.
  - What if your outcome variable is related to education attainment?
  - Willingness to buy a product, financial concerns, etc.
- Telephone surveys:
  - Do those with unlisted numbers, or on "do-not-call lists" have shared characteristics related to the outcome?
  - Do people with only mobile phones have shared characteristics related to the outcome?



- Mail surveys: it has been found that people with more education are more likely to fill out mail survey forms than people with less education.
  - End up with a sample with a higher average level of education than the population.
  - What if your outcome variable is related to education attainment?
  - Willingness to buy a product, financial concerns, etc.
- Telephone surveys:
  - Do those with unlisted numbers, or on "do-not-call lists" have shared characteristics related to the outcome?
  - Do people with only mobile phones have shared characteristics related to the outcome?

- Mail surveys: it has been found that people with more education are more likely to fill out mail survey forms than people with less education.
  - End up with a sample with a higher average level of education than the population.
  - What if your outcome variable is related to education attainment?
  - Willingness to buy a product, financial concerns, etc.
- Telephone surveys:
  - Do those with unlisted numbers, or on "do-not-call lists" have shared characteristics related to the outcome?
  - Do people with only mobile phones have shared characteristics related to the outcome?



- Mail surveys: it has been found that people with more education are more likely to fill out mail survey forms than people with less education.
  - End up with a sample with a higher average level of education than the population.
  - What if your outcome variable is related to education attainment?
  - Willingness to buy a product, financial concerns, etc.
- Telephone surveys:
  - Do those with unlisted numbers, or on "do-not-call lists" have shared characteristics related to the outcome?
  - Do people with only mobile phones have shared characteristics related to the outcome?



## Probability vs Non-probability Sampling

- Probability sampling: a-priori, every member of the population has a known, non-zero, probability of being selected into the population.
- Simple random sample: probability sample where every member has an equal probability of being selected.
  - Suppose Gallop poll is a simple random sample. Sample size=1000. Population size=112,611,029.
  - Each household in population has a 0.000889% chance of being selected.
- Non-probability sampling: Sampling technique in which elements of a population are selected based on personal judgment or convenience.
  - Since probabilities are not known, cannot fully rely on statistical theory to make accurate confidence intervals, hypothesis tests.
  - Most of the time, researchers say "So what? I don't care."

- Probability sampling: a-priori, every member of the population has a known, non-zero, probability of being selected into the population.
- Simple random sample: probability sample where every member has an equal probability of being selected.
  - Suppose Gallop poll is a simple random sample. Sample size=1000. Population size=112,611,029.
  - Each household in population has a 0.000889% chance of being selected.
- Non-probability sampling: Sampling technique in which elements of a population are selected based on personal judgment or convenience.
  - Since probabilities are not known, cannot fully rely on statistical theory to make accurate confidence intervals, hypothesis tests.
  - Most of the time, researchers say "So what? I don't care."

## Probability vs Non-probability Sampling

- Probability sampling: a-priori, every member of the population has a known, non-zero, probability of being selected into the population.
- Simple random sample: probability sample where every member has an equal probability of being selected.
  - Suppose Gallop poll is a simple random sample. Sample size=1000. Population size=112,611,029.
  - Each household in population has a 0.000889% chance of being selected.
- Non-probability sampling: Sampling technique in which elements of a population are selected based on personal judgment or convenience.
  - Since probabilities are not known, cannot fully rely on statistical theory to make accurate confidence intervals, hypothesis tests.
  - Most of the time, researchers say "So what? I don't care.

# Probability vs Non-probability Sampling

- Probability sampling: a-priori, every member of the population has a known, non-zero, probability of being selected into the population.
- Simple random sample: probability sample where every member has an equal probability of being selected.
  - Suppose Gallop poll is a simple random sample. Sample size=1000. Population size=112,611,029.
  - Each household in population has a 0.000889% chance of being selected.
- Non-probability sampling: Sampling technique in which elements of a population are selected based on personal judgment or convenience.
  - Since probabilities are not known, cannot fully rely on statistical theory to make accurate confidence intervals, hypothesis tests.
  - Most of the time, researchers say "So what? I don't care.



# Probability vs Non-probability Sampling

- Probability sampling: a-priori, every member of the population has a known, non-zero, probability of being selected into the population.
- Simple random sample: probability sample where every member has an equal probability of being selected.
  - Suppose Gallop poll is a simple random sample. Sample size=1000. Population size=112,611,029.
  - Each household in population has a 0.000889% chance of being selected.
- Non-probability sampling: Sampling technique in which elements of a population are selected based on personal judgment or convenience.
  - Since probabilities are not known, cannot fully rely on statistical theory to make accurate confidence intervals, hypothesis tests.
  - Most of the time, researchers say "So what? I don't care."

- Probability sampling: a-priori, every member of the population has a known, non-zero, probability of being selected into the population.
- Simple random sample: probability sample where every member has an equal probability of being selected.
  - Suppose Gallop poll is a simple random sample. Sample size=1000. Population size=112,611,029.
  - Each household in population has a 0.000889% chance of being selected.
- Non-probability sampling: Sampling technique in which elements of a population are selected based on personal judgment or convenience.
  - Since probabilities are not known, cannot fully rely on statistical theory to make accurate confidence intervals, hypothesis tests.
  - Most of the time, researchers say "So what? I don't care."

- Probability sampling: a-priori, every member of the population has a known, non-zero, probability of being selected into the population.
- Simple random sample: probability sample where every member has an equal probability of being selected.
  - Suppose Gallop poll is a simple random sample. Sample size=1000. Population size=112,611,029.
  - Each household in population has a 0.000889% chance of being selected.
- Non-probability sampling: Sampling technique in which elements of a population are selected based on personal judgment or convenience.
  - Since probabilities are not known, cannot fully rely on statistical theory to make accurate confidence intervals, hypothesis tests.
  - Most of the time, researchers say "So what? I don't care."

# Examples

- Point of contact samples (grab people on their way into a store)
- Website visitor survey.
- Store receipt survey
- Me! Teaching and learning techniques for BUS 230



# Examples

- Point of contact samples (grab people on their way into a store)
- Website visitor survey.
- Store receipt survey
- Me! Teaching and learning techniques for BUS 230.



# Examples

- Point of contact samples (grab people on their way into a store)
- Website visitor survey.
- Store receipt survey
- Me! Teaching and learning techniques for BUS 230.



# Examples

- Point of contact samples (grab people on their way into a store)
- Website visitor survey.
- Store receipt survey
- Me! Teaching and learning techniques for BUS 230



# Examples

- Point of contact samples (grab people on their way into a store)
- Website visitor survey.
- Store receipt survey
- Me! Teaching and learning techniques for BUS 230.



# Examples

- Point of contact samples (grab people on their way into a store)
- Website visitor survey.
- Store receipt survey
- Me! Teaching and learning techniques for BUS 230.



### Examples

- Point of contact samples (grab people on their way into a store)
- Website visitor survey.
- Store receipt survey
- Me! Teaching and learning techniques for BUS 230.



# Judgment Sampling

13/ 19

**Judgment sampling:** researcher uses his or her own judgment for determining who is put in the sample.

- Test markets for new products: company chooses a set of "typical" cities it believes will most closely match the national market.
- Company with many clients may select key accounts to research customers' opinions.

**Judgment sampling:** researcher uses his or her own judgment for determining who is put in the sample.

- Test markets for new products: company chooses a set of "typical" cities it believes will most closely match the national market.
- Company with many clients may select key accounts to research customers' opinions.

**Judgment sampling:** researcher uses his or her own judgment for determining who is put in the sample.

- Test markets for new products: company chooses a set of "typical" cities it believes will most closely match the national market.
- Company with many clients may select key accounts to research customers' opinions.

**Judgment sampling:** researcher uses his or her own judgment for determining who is put in the sample.

- Test markets for new products: company chooses a set of "typical" cities it believes will most closely match the national market.
- Company with many clients may select key accounts to research customers' opinions.

- Quota sampling: put a minimum requirement on the number of observations that must be drawn from a number of subgroups.
- Used to assure all subgroups are adequately represented.

- Make sure to sample at least 100 customers from each age group.
- Make sure to sample at least 100 customers from each income group.

- Quota sampling: put a minimum requirement on the number of observations that must be drawn from a number of subgroups.
- Used to assure all subgroups are adequately represented.

- Make sure to sample at least 100 customers from each age group.
- Make sure to sample at least 100 customers from each income group.

- Quota sampling: put a minimum requirement on the number of observations that must be drawn from a number of subgroups.
- Used to assure all subgroups are adequately represented.

- Make sure to sample at least 100 customers from each age group.
- Make sure to sample at least 100 customers from each income group.

- Quota sampling: put a minimum requirement on the number of observations that must be drawn from a number of subgroups.
- Used to assure all subgroups are adequately represented.

- Make sure to sample at least 100 customers from each age group.
- Make sure to sample at least 100 customers from each income group.

- Quota sampling: put a minimum requirement on the number of observations that must be drawn from a number of subgroups.
- Used to assure all subgroups are adequately represented.

- Make sure to sample at least 100 customers from each age group.
- Make sure to sample at least 100 customers from each income group.

- Initial sample is selected,
- 2 Then friends or contacts of the members in the initial sample are selected (or self-selected)
- 3 Then their friends or contacts are selected (or self-selected).
- Repeat step 3 and watch your sample size snowball
- Benefit: it may be very hard to find any members of very unique populations. Eg: harp players.
- Problems:
  - Very non-random. Individuals in round i are likely to have similar characteristics as those in round i - 1.
  - Often, every round of sampling is pure self-selection bias

- Initial sample is selected,
- 2 Then friends or contacts of the members in the initial sample are selected (or self-selected)
- 3 Then their friends or contacts are selected (or self-selected).
- Repeat step 3 and watch your sample size snowball.
- Benefit: it may be very hard to find any members of very unique populations. Eg: harp players.
- Problems:
  - Very non-random. Individuals in round i are likely to have similar characteristics as those in round i - 1.
  - Often, every round of sampling is pure self-selection bias

- Initial sample is selected,
- Then friends or contacts of the members in the initial sample are selected (or self-selected)
- 3 Then their friends or contacts are selected (or self-selected).
- Repeat step 3 and watch your sample size snowball
- Benefit: it may be very hard to find any members of very unique populations. Eg: harp players.
- Problems:
  - Very non-random. Individuals in round i are likely to have similar characteristics as those in round i - 1.
  - Often, every round of sampling is pure self-selection bias



- Initial sample is selected,
- 2 Then friends or contacts of the members in the initial sample are selected (or self-selected)
- 3 Then their friends or contacts are selected (or self-selected).
- 4 Repeat step 3 and watch your sample size snowball.
- Benefit: it may be very hard to find any members of very unique populations. Eg: harp players.
- Problems:
  - Very non-random. Individuals in round i are likely to have similar characteristics as those in round i-1.
  - Often, every round of sampling is pure self-selection bias

- Initial sample is selected,
- 2 Then friends or contacts of the members in the initial sample are selected (or self-selected)
- Then their friends or contacts are selected (or self-selected).
- Repeat step 3 and watch your sample size snowball.
- Benefit: it may be very hard to find any members of very unique populations. Eg: harp players.
- Problems:
  - Very non-random. Individuals in round i are likely to have similar characteristics as those in round i - 1.
  - Often, every round of sampling is pure self-selection bias



- Snowball sampling process:
  - Initial sample is selected,
  - 2 Then friends or contacts of the members in the initial sample are selected (or self-selected)
  - Then their friends or contacts are selected (or self-selected).
  - Repeat step 3 and watch your sample size snowball.
- Benefit: it may be very hard to find any members of very unique populations. Eg: harp players.
- Problems:
  - Very non-random. Individuals in round i are likely to have similar characteristics as those in round i - 1.
  - Often, every round of sampling is pure self-selection bias



- Initial sample is selected,
- 2 Then friends or contacts of the members in the initial sample are selected (or self-selected)
- 3 Then their friends or contacts are selected (or self-selected).
- Repeat step 3 and watch your sample size snowball.
- Benefit: it may be very hard to find any members of very unique populations. Eg: harp players.
- Problems:
  - Very non-random. Individuals in round i are likely to have similar characteristics as those in round i-1.
  - Often, every round of sampling is pure self-selection bias.



- Initial sample is selected,
- 2 Then friends or contacts of the members in the initial sample are selected (or self-selected)
- 3 Then their friends or contacts are selected (or self-selected).
- Repeat step 3 and watch your sample size snowball.
- Benefit: it may be very hard to find any members of very unique populations. Eg: harp players.
- Problems:
  - Very non-random. Individuals in round i are likely to have similar characteristics as those in round i-1.
  - Often, every round of sampling is pure self-selection bias.



- Initial sample is selected,
- Then friends or contacts of the members in the initial sample are selected (or self-selected)
- 3 Then their friends or contacts are selected (or self-selected).
- Repeat step 3 and watch your sample size snowball.
- Benefit: it may be very hard to find any members of very unique populations. Eg: harp players.
- Problems:
  - Very non-random. Individuals in round i are likely to have similar characteristics as those in round i-1.
  - Often, every round of sampling is pure self-selection bias.



- Haphazard sampling using non-probability sampling methods can create biases.
- Convenience Sampling: why were these elements convenient? Is it related to the outcome variable.
  - Example: Study on academic performance, Sampling method
     clock tower point-of-contact at 12pm.
  - Example: Store receipt survey, J.C. Penny offers 15% off next purchase if you complete the survey online.
- Quota Sampling: may cause some groups to be over-represented. Does being a member of a particular group influence the outcome?
- **Snowball sampling:** probably big systematic sampling bias.

- Haphazard sampling using non-probability sampling methods can create biases.
- **Convenience Sampling:** why were these elements convenient? Is it related to the outcome variable.
  - Example: Study on academic performance, Sampling method = clock tower point-of-contact at 12pm.
  - Example: Store receipt survey, J.C. Penny offers 15% off next purchase if you complete the survey online.
- Quota Sampling: may cause some groups to be over-represented. Does being a member of a particular group influence the outcome?
- **Snowball sampling:** probably big systematic sampling bias.

- Haphazard sampling using non-probability sampling methods can create biases.
- **Convenience Sampling:** why were these elements convenient? Is it related to the outcome variable.
  - Example: Study on academic performance, Sampling method = clock tower point-of-contact at 12pm.
  - Example: Store receipt survey, J.C. Penny offers 15% off next purchase if you complete the survey online.
- Quota Sampling: may cause some groups to be over-represented. Does being a member of a particular group influence the outcome?
- **Snowball sampling:** probably big systematic sampling bias.

- Haphazard sampling using non-probability sampling methods can create biases.
- **Convenience Sampling:** why were these elements convenient? Is it related to the outcome variable.
  - Example: Study on academic performance, Sampling method = clock tower point-of-contact at 12pm.
  - Example: Store receipt survey, J.C. Penny offers 15% off next purchase if you complete the survey online.
- Quota Sampling: may cause some groups to be over-represented. Does being a member of a particular group influence the outcome?
- Snowball sampling: probably big systematic sampling bias.



- Haphazard sampling using non-probability sampling methods can create biases.
- **Convenience Sampling:** why were these elements convenient? Is it related to the outcome variable.
  - Example: Study on academic performance, Sampling method = clock tower point-of-contact at 12pm.
  - Example: Store receipt survey, J.C. Penny offers 15% off next purchase if you complete the survey online.
- Quota Sampling: may cause some groups to be over-represented. Does being a member of a particular group influence the outcome?
- Snowball sampling: probably big systematic sampling bias.



- Haphazard sampling using non-probability sampling methods can create biases.
- Convenience Sampling: why were these elements convenient? Is it related to the outcome variable.
  - Example: Study on academic performance, Sampling method = clock tower point-of-contact at 12pm.
  - Example: Store receipt survey, J.C. Penny offers 15% off next purchase if you complete the survey online.
- Quota Sampling: may cause some groups to be over-represented. Does being a member of a particular group influence the outcome?
- Snowball sampling: probably big systematic sampling bias.



- Simple random sampling: every member has an equal chance of being selected, sample elements are randomly drawn.
- **Systematic sampling:** A starting point is selected, then every *n*th element is selected from the sampling frame.
  - This will yield random results if ordering of elements in the sampling frame is random.
- Periodicity: when outcome variable or characteristics of population follow a pattern.
  - Example: Don't collect retail sales information every 7th day.
  - Example: donor list ordered by size of the donations. Don't sample every 50th person if the 10 largest are first.

## **Probability Sampling Methods**

- Simple random sampling: every member has an equal chance of being selected, sample elements are randomly drawn.
- **Systematic sampling:** A starting point is selected, then every *n*th element is selected from the sampling frame.
  - This will yield random results if ordering of elements in the sampling frame is random.
- Periodicity: when outcome variable or characteristics of population follow a pattern.
  - Example: Don't collect retail sales information every /th day
  - Example: donor list ordered by size of the donations. Don't sample every 50th person if the 10 largest are first.

- Simple random sampling: every member has an equal chance of being selected, sample elements are randomly drawn.
- **Systematic sampling:** A starting point is selected, then every *n*th element is selected from the sampling frame.
  - This will yield random results if ordering of elements in the sampling frame is random.
- Periodicity: when outcome variable or characteristics of population follow a pattern.
  - Example: Don't collect retail sales information every 7th day
  - Example: donor list ordered by size of the donations. Don't sample every 50th person if the 10 largest are first.

- Simple random sampling: every member has an equal chance of being selected, sample elements are randomly drawn.
- **Systematic sampling:** A starting point is selected, then every *n*th element is selected from the sampling frame.
  - This will yield random results if ordering of elements in the sampling frame is random.
- Periodicity: when outcome variable or characteristics of population follow a pattern.
  - Example: Don't collect retail sales information every 7th day.
  - Example: donor list ordered by size of the donations. Don't sample every 50th person if the 10 largest are first.



## **Probability Sampling Methods**

- Simple random sampling: every member has an equal chance of being selected, sample elements are randomly drawn.
- **Systematic sampling:** A starting point is selected, then every *n*th element is selected from the sampling frame.
  - This will yield random results if ordering of elements in the sampling frame is random.
- Periodicity: when outcome variable or characteristics of population follow a pattern.
  - Example: Don't collect retail sales information every 7th day.
  - Example: donor list ordered by size of the donations. Don't sample every 50th person if the 10 largest are first.



- Simple random sampling: every member has an equal chance of being selected, sample elements are randomly drawn.
- **Systematic sampling:** A starting point is selected, then every *n*th element is selected from the sampling frame.
  - This will yield random results if ordering of elements in the sampling frame is random.
- Periodicity: when outcome variable or characteristics of population follow a pattern.
  - Example: Don't collect retail sales information every 7th day.
  - Example: donor list ordered by size of the donations. Don't sample every 50th person if the 10 largest are first.



- Stratified Sampling: Has the same goal of quota sampling, make sure various subgroups of the population are adequately sampled.
- Process:
  - Population is separated into groups, or strata.
  - Random sampling is conducted within each strata
- Proportional stratified sample: number of observations drawn from each strata is proportional to the population size of that strata.
- Disproportional stratified sample: some strata are over-sampled (relative to their population size), likely because their population is small, but the findings from that particular strata are interesting or important.

- Stratified Sampling: Has the same goal of quota sampling, make sure various subgroups of the population are adequately sampled.
- Process:
  - Population is separated into groups, or *strata*.
  - 2 Random sampling is conducted within each strata.
- Proportional stratified sample: number of observations drawn from each strata is proportional to the population size of that strata.
- Disproportional stratified sample: some strata are over-sampled (relative to their population size), likely because their population is small, but the findings from that particular strata are interesting or important.

- Stratified Sampling: Has the same goal of quota sampling, make sure various subgroups of the population are adequately sampled.
- Process:
  - Population is separated into groups, or strata.
  - ② Random sampling is conducted within each strata.
- Proportional stratified sample: number of observations drawn from each strata is proportional to the population size of that strata.
- Disproportional stratified sample: some strata are over-sampled (relative to their population size), likely because their population is small, but the findings from that particular strata are interesting or important.

- Stratified Sampling: Has the same goal of quota sampling, make sure various subgroups of the population are adequately sampled.
- Process:
  - Oppulation is separated into groups, or strata.
  - 2 Random sampling is conducted within each strata.
- Proportional stratified sample: number of observations drawn from each strata is proportional to the population size of that strata.
- Disproportional stratified sample: some strata are over-sampled (relative to their population size), likely because their population is small, but the findings from that particular strata are interesting or important.

- Stratified Sampling: Has the same goal of quota sampling, make sure various subgroups of the population are adequately sampled.
- Process:
  - Oppulation is separated into groups, or strata.
  - Q Random sampling is conducted within each strata.
- Proportional stratified sample: number of observations drawn from each strata is proportional to the population size of that strata.
- Disproportional stratified sample: some strata are over-sampled (relative to their population size), likely because their population is small, but the findings from that particular strata are interesting or important.

- Stratified Sampling: Has the same goal of quota sampling, make sure various subgroups of the population are adequately sampled.
- Process:
  - Oppulation is separated into groups, or strata.
  - Q Random sampling is conducted within each strata.
- Proportional stratified sample: number of observations drawn from each strata is proportional to the population size of that strata.
- Disproportional stratified sample: some strata are over-sampled (relative to their population size), likely because their population is small, but the findings from that particular strata are interesting or important.

- Cluster sampling: an economical, multi-stage sampling method.
- Process:
  - Population is broken into clusters that do not likely differ based on the outcome variable.
  - Clusters are selected randomly
  - Every item of a particular cluster is put into a sample.
- If sampling a company's customers involved travel costs, economical not to fly to every city where there are customers.
   Pick cities randomly, survey all customers in these cities.

- Cluster sampling: an economical, multi-stage sampling method.
- Process:
  - Population is broken into clusters that do not likely differ based on the outcome variable.
  - Clusters are selected randomly.
  - Output Description
    Output Descript
- If sampling a company's customers involved travel costs, economical not to fly to every city where there are customers.
   Pick cities randomly, survey all customers in these cities.

- Cluster sampling: an economical, multi-stage sampling method.
- Process:
  - Oppulation is broken into clusters that do not likely differ based on the outcome variable.
  - Clusters are selected randomly.
  - Every item of a particular cluster is put into a sample.
- If sampling a company's customers involved travel costs, economical not to fly to every city where there are customers.
   Pick cities randomly, survey all customers in these cities.

- Cluster sampling: an economical, multi-stage sampling method.
- Process:
  - Population is broken into clusters that do not likely differ based on the outcome variable.
  - ② Clusters are selected randomly.
  - Every item of a particular cluster is put into a sample.
- If sampling a company's customers involved travel costs, economical not to fly to every city where there are customers.
   Pick cities randomly, survey all customers in these cities.

- Cluster sampling: an economical, multi-stage sampling method.
- Process:
  - Oppulation is broken into clusters that do not likely differ based on the outcome variable.
  - Clusters are selected randomly.
  - Every item of a particular cluster is put into a sample.
- If sampling a company's customers involved travel costs, economical not to fly to every city where there are customers.
   Pick cities randomly, survey all customers in these cities.

- Cluster sampling: an economical, multi-stage sampling method.
- Process:
  - Population is broken into clusters that do not likely differ based on the outcome variable.
  - ② Clusters are selected randomly.
  - Every item of a particular cluster is put into a sample.
- If sampling a company's customers involved travel costs, economical not to fly to every city where there are customers.
   Pick cities randomly, survey all customers in these cities.