Decision Making

BUS 735: Business Decision Making and Research

- Specific goals:
 - Learn how to conduct regression analysis with a dummy independent variable.
- Learning objectives:
 - LO5: Be able to use stochastic operations research models to answer business questions that involve uncertainty.
 - LO7: Have a sound familiarity of various statistical and quantitative methods in order to be able to approach a business decision problem and be able to select appropriate methods to answer the question.

- Specific goals:
 - Learn how to conduct regression analysis with a dummy independent variable.
- Learning objectives:
 - LO5: Be able to use stochastic operations research models to answer business questions that involve uncertainty.
 - LO7: Have a sound familiarity of various statistical and quantitative methods in order to be able to approach a business decision problem and be able to select appropriate methods to answer the question.

- Suppose you have to decide on one of three choices for your business:
 - Expand facilities.
 - 2 Renovate existing facilities
 - O nothing.
- Each have costs (known) and benefits (unknown).
- Suppose profits depend on economic conditions

- Suppose you have to decide on one of three choices for your business:
 - Expand facilities.
 - ② Renovate existing facilities.
 - O nothing.
- Each have costs (known) and benefits (unknown).
- Suppose profits depend on economic conditions

- Suppose you have to decide on one of three choices for your business:
 - Expand facilities.
 - ② Renovate existing facilities.
 - O nothing.
- Each have costs (known) and benefits (unknown).
- Suppose profits depend on economic conditions:

Decision Making Without Probabilities

- Suppose you have to decide on one of three choices for your business:
 - Expand facilities.
 - Renovate existing facilities.
 - Do nothing.
- Each have costs (known) and benefits (unknown).
- Suppose profits depend on economic conditions:

Decision	Good Economic Conditions	Bad Economic Conditions
Expand	\$150,000	-\$10,000
Renovate	\$90,000	\$10,000
Do nothing	\$70,000	\$40,000

- Decision Making Without Probabilities
 - Suppose you have to decide on one of three choices for your business:
 - Expand facilities.
 - ② Renovate existing facilities.
 - O nothing.
 - Each have costs (known) and benefits (unknown).
 - Suppose profits depend on economic conditions:

Decision	Good Economic	Bad Economic
Decision	Conditions	Conditions
Expand	\$150,000	-\$10,000
Renovate	\$90,000	\$10,000
Do nothing	\$70,000	\$40,000

- Problem: probabilities of having good economic conditions or bad economic conditions are unknown.
- Maximax Decision:
 - Compute the best (maximum) outcome for each choice (very optimistic).
 - Choose the maximum of the best outcomes.
 - Choosing options given best-case scenarios

- Problem: probabilities of having good economic conditions or bad economic conditions are unknown.
- Maximax Decision:
 - Compute the best (maximum) outcome for each choice (very optimistic).
 - Choose the maximum of the best outcomes.
 - Choosing options given best-case scenarios.

Decision	Good Economic Conditions	Bad Economic Conditions	Maximum
Expand	\$150,000	-\$10,000	\$150,000
Renovate	\$90,000	\$10,000	\$90,000
Do nothing	\$70,000	\$40,000	\$70,000

- Problem: probabilities of having good economic conditions or bad economic conditions are unknown.
- Maximax Decision:
 - Compute the best (maximum) outcome for each choice (very optimistic).
 - Choose the maximum of the best outcomes.
 - Choosing options given best-case scenarios.

Decision	Good Economic Conditions	Bad Economic Conditions	Maximum
Expand	\$150,000	-\$10,000	\$150,000
Renovate	\$90,000	\$10,000	\$90,000
Do nothing	\$70,000	\$40,000	\$70,000

- Problem: probabilities of having good economic conditions or bad economic conditions are unknown.
- Maximax Decision:
 - Compute the best (maximum) outcome for each choice (very optimistic).
 - Choose the maximum of the best outcomes.
 - Choosing options given best-case scenarios.

Decision	Good Economic Conditions	Bad Economic Conditions	Maximum
Expand	\$150,000	-\$10,000	\$150,000
Renovate	\$90,000	\$10,000	\$90,000
Do nothing	\$70,000	\$40,000	\$70,000

- Problem: probabilities of having good economic conditions or bad economic conditions are unknown.
- Maximax Decision:
 - Compute the best (maximum) outcome for each choice (very optimistic).
 - Choose the maximum of the best outcomes.
 - Choosing options given best-case scenarios.

Decision	Good Economic Conditions	Bad Economic Conditions	Maximum
Expand	\$150,000	-\$10,000	\$150,000
Renovate	\$90,000	\$10,000	\$90,000
Do nothing	\$70,000	\$40,000	\$70,000

- Problem: probabilities of having good economic conditions or bad economic conditions are unknown.
- Maximax Decision:
 - Compute the best (maximum) outcome for each choice (very optimistic).
 - Choose the maximum of the best outcomes.
 - Choosing options given best-case scenarios.

Decision	Good Economic Conditions	Bad Economic Conditions	Maximum
Expand	\$150,000	-\$10,000	\$150,000
Renovate	\$90,000	\$10,000	\$90,000
Do nothing	\$70,000	\$40,000	\$70,000

Maximax Decision

- Problem: probabilities of having good economic conditions or bad economic conditions are unknown.
- Maximax Decision:
 - Compute the best (maximum) outcome for each choice (very optimistic).
 - Choose the maximum of the best outcomes.
 - Choosing options given best-case scenarios.

Decision	Good Economic	Bad Economic	Maximum
Decision	Conditions	Conditions	IVIAXIIIIUIII
Expand	\$150,000	-\$10,000	\$150,000
Renovate	\$90,000	\$10,000	\$90,000
Do nothing	\$70,000	\$40,000	\$70,000

• Maximin Decision:

- Compute the worst (minimum) outcome for each choice (very pessimistic).
- Choose the maximum of the worst outcomes.
- Choosing options given worst-case scenarios.

Decision	Good Economic Conditions	Bad Economic Conditions	Minimum
Expand	\$150,000	-\$10,000	-\$10,000
Renovate	\$90,000	\$10,000	\$10,000
Do nothing	\$70,000	\$40,000	\$40,000

• Maximin Decision:

- Compute the worst (minimum) outcome for each choice (very pessimistic).
- Choose the maximum of the worst outcomes.
- Choosing options given worst-case scenarios.

Decision	Good Economic Conditions	Bad Economic Conditions	Minimum
Expand	\$150,000	-\$10,000	-\$10,000
Renovate	\$90,000	\$10,000	\$10,000
Do nothing	\$70,000	\$40,000	\$40,000

- Maximin Decision:
 - Compute the worst (minimum) outcome for each choice (very pessimistic).
 - Choose the maximum of the worst outcomes.
 - Choosing options given worst-case scenarios.

Decision	Good Economic Conditions	Bad Economic Conditions	Minimum
Expand	\$150,000	-\$10,000	-\$10,000
Renovate	\$90,000	\$10,000	\$10,000
Do nothing	\$70,000	\$40,000	\$40,000

- Maximin Decision:
 - Compute the worst (minimum) outcome for each choice (very pessimistic).
 - Choose the maximum of the worst outcomes.
 - Choosing options given worst-case scenarios.

Decision	Good Economic Conditions	Bad Economic Conditions	Minimum
Expand	\$150,000	-\$10,000	-\$10,000
Renovate	\$90,000	\$10,000	\$10,000
Do nothing	\$70,000	\$40,000	\$40,000

- Maximin Decision:
 - Compute the worst (minimum) outcome for each choice (very pessimistic).
 - Choose the maximum of the worst outcomes.
 - Choosing options given worst-case scenarios.

Decision	Good Economic	Bad Economic	Minimum
Decision	Conditions	Conditions	IVIIIIIIIIIIIIII
Expand	\$150,000	-\$10,000	-\$10,000
Renovate	\$90,000	\$10,000	\$10,000
Do nothing	\$70,000	\$40,000	\$40,000

- Maximin Decision:
 - Compute the worst (minimum) outcome for each choice (very pessimistic).
 - Choose the maximum of the worst outcomes.
 - Choosing options given worst-case scenarios.

Decision	Good Economic	Bad Economic	Minimum
Decision	Conditions	Conditions	IVIIIIIIIIIIIIII
Expand	\$150,000	-\$10,000	-\$10,000
Renovate	\$90,000	\$10,000	\$10,000
Do nothing	\$70,000	\$40,000	\$40,000

- **Regret** is the difference between the payoff of a given decision and the best decision under a given scenario.
- Example: Suppose you chose to do nothing and there ended up being good economic conditions.
 - Best decision given good economic condition is to expano Profit = \$150,000.
 - Profit from doing nothing given good economic condition is \$70,000.
 - Regret = \$150,000 \$70,000 = \$80,000.
- Minimax Regret Decision:
 - Compute regrets for every cell in table..
 - Find the maximum regret for each decision.
 - Choose the minimum of these maximum regret values.

- Regret is the difference between the payoff of a given decision and the best decision under a given scenario.
- Example: Suppose you chose to do nothing and there ended up being good economic conditions.
 - Best decision given good economic condition is to expand.
 Profit = \$150,000.
 - Profit from *doing nothing* given good economic condition is \$70,000.
 - Regret = \$150,000 \$70,000 = \$80,000.
- Minimax Regret Decision:
 - Compute regrets for every cell in table..
 - Find the maximum regret for each decision.
 - Choose the minimum of these maximum regret values.

Minimax Regret Decision

- Regret is the difference between the payoff of a given decision and the best decision under a given scenario.
- Example: Suppose you chose to do nothing and there ended up being good economic conditions.
 - Best decision given good economic condition is to expand.
 Profit = \$150,000.
 - Profit from doing nothing given good economic condition is \$70,000.
 - Regret = \$150,000 \$70,000 = \$80,000.
- Minimax Regret Decision:
 - Compute regrets for every cell in table..
 - Find the maximum regret for each decision.
 - Choose the minimum of these maximum regret values.

- Regret is the difference between the payoff of a given decision and the best decision under a given scenario.
- Example: Suppose you chose to do nothing and there ended up being good economic conditions.
 - Best decision given good economic condition is to expand.
 Profit = \$150,000.
 - Profit from doing nothing given good economic condition is \$70,000.
 - Regret = \$150,000 \$70,000 = \$80,000.
- Minimax Regret Decision:
 - Compute regrets for every cell in table..
 - Find the maximum regret for each decision.
 - Choose the minimum of these maximum regret values.

- Regret is the difference between the payoff of a given decision and the best decision under a given scenario.
- Example: Suppose you chose to do nothing and there ended up being good economic conditions.
 - Best decision given good economic condition is to expand.
 Profit = \$150,000.
 - Profit from doing nothing given good economic condition is \$70,000.
 - Regret = \$150,000 \$70,000 = \$80,000.
- Minimax Regret Decision:
 - Compute regrets for every cell in table..
 - Find the maximum regret for each decision.
 - Choose the minimum of these maximum regret values.

- **Regret** is the difference between the payoff of a given decision and the best decision under a given scenario.
- Example: Suppose you chose to do nothing and there ended up being good economic conditions.
 - Best decision given good economic condition is to expand.
 Profit = \$150,000.
 - Profit from doing nothing given good economic condition is \$70,000.
 - Regret = \$150,000 \$70,000 = \$80,000.
- Minimax Regret Decision:
 - Compute regrets for every cell in table..
 - Find the maximum regret for each decision.
 - Choose the minimum of these maximum regret values.

Payouts Table:

Decision	Good Economic	Bad Economic
Decision	Conditions	Conditions
Expand	\$150,000	-\$10,000
Renovate	\$90,000	\$10,000
Do nothing	\$70,000	\$40,000

Regrets Table:

Minimum of maximum regrets = \$50,000. Choice = Expand!

Payouts Table:

Decision	Good Economic	Bad Economic
Decision	Conditions	Conditions
Expand	\$150,000	-\$10,000
Renovate	\$90,000	\$10,000
Do nothing	\$70,000	\$40,000

Regrets Table:

• Minimum of maximum regrets = \$50,000. Choice = Expand!

Payouts Table:

Decision	Good Economic	Bad Economic
Decision	Conditions	Conditions
Expand	\$150,000	-\$10,000
Renovate	\$90,000	\$10,000
Do nothing	\$70,000	\$40,000

Regrets Table:

Decision	Good Economic Conditions	Bad Economic Conditions	Maximum
Expand	\$0	\$50,000	\$50,000
Renovate	\$60,000	\$30,000	\$60,000
Do nothing	\$80,000	\$0	\$80,000

Minimum of maximum regrets = \$50,000. Choice = Expand!

Minimax Regret Decision

Payouts Table:

Decision	Good Economic	Bad Economic	
Decision	Conditions	Conditions	
Expand	\$150,000	-\$10,000	
Renovate	\$90,000	\$10,000	
Do nothing	\$70,000	\$40,000	

Regrets Table:

Decision	Good Economic Conditions	Bad Economic Conditions	Maximum
Expand	\$0	\$50,000	\$50,000
Renovate	\$60,000	\$30,000	\$60,000
Do nothing	\$80,000	\$0	\$80,000

• Minimum of maximum regrets = \$50,000. Choice = Expand!

Minimax Regret Decision

Payouts Table:

Decision	Good Economic	Bad Economic	
Decision	Conditions	Conditions	
Expand	\$150,000	-\$10,000	
Renovate	\$90,000	\$10,000	
Do nothing	\$70,000	\$40,000	

Regrets Table:

Decision	Good Economic Conditions	Bad Economic Conditions	Maximum
Expand	\$0	\$50,000	\$50,000
Renovate	\$60,000	\$30,000	\$60,000
Do nothing	\$80,000	\$0	\$80,000

• Minimum of maximum regrets = \$50,000. Choice = Expand!

- Suppose (for no reason whatsoever) that each outcome is equally likely.
- Compute weighted average of each decision (with equal weights).
- P(Good Economic Conditions) = P(Bad Economic Conditions) = 0.5.
- Equal Likelihood Table:

- Suppose (for no reason whatsoever) that each outcome is equally likely.
- Compute weighted average of each decision (with equal weights).
- P(Good Economic Conditions) = P(Bad Economic Conditions) = 0.5.
- Equal Likelihood Table:

- Suppose (for no reason whatsoever) that each outcome is equally likely.
- Compute weighted average of each decision (with equal weights).
- P(Good Economic Conditions) = P(Bad Economic Conditions) = 0.5.
- Equal Likelihood Table:

Equally Likely Decision

- Suppose (for no reason whatsoever) that each outcome is equally likely.
- Compute weighted average of each decision (with equal weights).
- P(Good Economic Conditions) = P(Bad Economic Conditions) = 0.5.
- Equal Likelihood Table:

Decision	Good Economic	Bad Economic	"Expected"
	Conditions	Conditions	Value
Expand	\$150,00	-\$10,000	\$70,000
Renovate	\$90,000	\$10,000	\$50,000
Do nothing	\$70,000	\$40,000	\$55,000

- Suppose (for no reason whatsoever) that each outcome is equally likely.
- Compute weighted average of each decision (with equal weights).
- P(Good Economic Conditions) = P(Bad Economic Conditions) = 0.5.
- Equal Likelihood Table:

	Decision	Good Economic	Bad Economic	"Expected"
	Decision	Conditions	Conditions	Value
	Expand	\$150,00	-\$10,000	\$70,000
	Renovate	\$90,000	\$10,000	\$50,000
	Do nothing	\$70,000	\$40,000	\$55,000

• Maximum "expected" value = \$70,000. Decision = Expand!

Equally Likely Decision

- Suppose (for no reason whatsoever) that each outcome is equally likely.
- Compute weighted average of each decision (with equal weights).
- P(Good Economic Conditions) = P(Bad Economic Conditions) = 0.5.
- Equal Likelihood Table:

Decision	Good Economic	Bad Economic	"Expected"
Decision	Conditions	Conditions	Value
Expand	\$150,00	-\$10,000	\$70,000
Renovate	\$90,000	\$10,000	\$50,000
Do nothing	\$70,000	\$40,000	\$55,000

Maximum "expected" value = \$70,000. Decision = Expand!

- Take a weighted average again, but choose an arbitrary weight for the best-case value.
- Coefficient of optimism, given by α , is a measure of the decision makers optimism.
- Best-case weight = α , worst-case weight = (1α) .
- Suppose $\alpha = 0.2$ (very arbitrary).

Hurwicz Decision

- Take a weighted average again, but choose an arbitrary weight for the best-case value.
- Coefficient of optimism, given by α , is a measure of the decision makers optimism.
- Best-case weight = α , worst-case weight = (1α) .
- Suppose $\alpha = 0.2$ (very arbitrary).

Hurwicz Decision

- Take a weighted average again, but choose an arbitrary weight for the best-case value.
- ullet Coefficient of optimism, given by lpha, is a measure of the decision makers optimism.
- Best-case weight = α , worst-case weight = (1α) .
- Suppose $\alpha = 0.2$ (very arbitrary).

- Take a weighted average again, but choose an arbitrary weight for the best-case value.
- ullet Coefficient of optimism, given by lpha, is a measure of the decision makers optimism.
- Best-case weight = α , worst-case weight = (1α) .
- Suppose $\alpha = 0.2$ (very arbitrary).

Decision	Good Economic	Bad Economic	"Expected"
Decision	Conditions	Conditions	Value
Expand	\$150,00	-\$10,000	\$22,000
Renovate	\$90,000	\$10,000	\$26,000
Do nothing	\$70,000	\$40,000	\$46,000

- Take a weighted average again, but choose an arbitrary weight for the best-case value.
- ullet Coefficient of optimism, given by lpha, is a measure of the decision makers optimism.
- Best-case weight = α , worst-case weight = (1α) .
- Suppose $\alpha = 0.2$ (very arbitrary).

Decision	Good Economic	Bad Economic	"Expected"
Decision	Conditions	Conditions	Value
Expand	\$150,00	-\$10,000	\$22,000
Renovate	\$90,000	\$10,000	\$26,000
Do nothing	\$70,000	\$40,000	\$46,000

Hurwicz Decision

- Take a weighted average again, but choose an arbitrary weight for the best-case value.
- ullet Coefficient of optimism, given by lpha, is a measure of the decision makers optimism.
- Best-case weight = α , worst-case weight = (1α) .
- Suppose $\alpha = 0.2$ (very arbitrary).

Decision	Good Economic	Bad Economic	"Expected"
Decision	Conditions	Conditions	Value
Expand	\$150,00	-\$10,000	\$22,000
Renovate	\$90,000	\$10,000	\$26,000
Do nothing	\$70,000	\$40,000	\$46,000

- Coefficient of optimism can be very difficult to choose.
- Optimal choice might vary a lot depending on this parameter.
- ullet For each pair of decisions, find the cut-off value of lpha that leads one to switch decisions.

- Coefficient of optimism can be very difficult to choose.
- Optimal choice might vary a lot depending on this parameter.
- ullet For each pair of decisions, find the cut-off value of lpha that leads one to switch decisions.

- Coefficient of optimism can be very difficult to choose.
- Optimal choice might vary a lot depending on this parameter.
- ullet For each pair of decisions, find the cut-off value of lpha that leads one to switch decisions.

Criterion	Decision
Maximax	Expand
Maximin	Do nothing
Minimax Regret	Expand
Equal Likelihood	Expand
Hurwicz ($\alpha = 0.2$)	Do nothing

- Dominant decision: when same choice is made for every criterion considered.
- Dominated decision: when choice is never made for every criterion considered.

Criterion	Decision
Maximax	Expand
Maximin	Do nothing
Minimax Regret	Expand
Equal Likelihood	Expand
Hurwicz ($lpha=$ 0.2)	Do nothing

- **Dominant decision:** when same choice is made for every criterion considered.
- Dominated decision: when choice is never made for every criterion considered.

Criterion	Decision
Maximax	Expand
Maximin	Do nothing
Minimax Regret	Expand
Equal Likelihood	Expand
Hurwicz ($\alpha = 0.2$)	Do nothing

- **Dominant decision:** when same choice is made for every criterion considered.
- Dominated decision: when choice is never made for every criterion considered.

- Suppose probabilities for good economic conditions and bad economic conditions are known.
- Suppose P(Good Economic Conditions) 0.6, P(Bad Economic Conditions) = 0.4.

- Maximum expected value = \$86,000. Decision = Expand!
- A risk neutral decision maker should make this decision.

economic conditions are known.

Expected Values: Probabilities Known

- Suppose probabilities for good economic conditions and bad
 - Suppose P(Good Economic Conditions) 0.6, P(Bad Economic Conditions) = 0.4.

Decision	Good Economic	Bad Economic	Expected
	Conditions	Conditions	Value
Expand	\$150,00	-\$10,000	\$86,000
Renovate	\$90,000	\$10,000	\$58,000
Do nothing	\$70,000	\$40,000	\$58,000

- Maximum expected value = \$86,000. Decision = Expand!
- A risk neutral decision maker should make this decision.

- Suppose probabilities for good economic conditions and bad economic conditions are known.
- Suppose P(Good Economic Conditions) 0.6, P(Bad Economic Conditions) = 0.4.

Decision	Good Economic	Bad Economic	Expected
	Conditions	Conditions	Value
Expand	\$150,00	-\$10,000	\$86,000
Renovate	\$90,000	\$10,000	\$58,000
Do nothing	\$70,000	\$40,000	\$58,000

- Maximum expected value = \$86,000. Decision = Expand!
- A risk neutral decision maker should make this decision.

- Suppose probabilities for good economic conditions and bad economic conditions are known.
- Suppose P(Good Economic Conditions) 0.6, P(Bad Economic Conditions) = 0.4.

Decision	Good Economic	Bad Economic	Expected
	Conditions	Conditions	Value
Expand	\$150,00	-\$10,000	\$86,000
Renovate	\$90,000	\$10,000	\$58,000
Do nothing	\$70,000	\$40,000	\$58,000

- Maximum expected value = \$86,000. Decision = Expand!
- A risk neutral decision maker should make this decision.

- Suppose probabilities for good economic conditions and bad economic conditions are known.
- Suppose P(Good Economic Conditions) 0.6, P(Bad Economic Conditions) = 0.4.

Decision	Good Economic	Bad Economic	Expected
	Conditions	Conditions	Value
Expand	\$150,00	-\$10,000	\$86,000
Renovate	\$90,000	\$10,000	\$58,000
Do nothing	\$70,000	\$40,000	\$58,000

- Maximum expected value = \$86,000. Decision = Expand!
- A **risk neutral** decision maker should make this decision.

- Expected opportunity loss (EOL) = expected value of regret for each decision.
- Regrets Table:

- Minimum expected regret = \$20,000. Decision = Expand!
- Minimum expected loss decision will always be equal to maximum expected value decision.

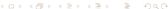
- Expected opportunity loss (EOL) = expected value of regret for each decision.
- Regrets Table:

Decision	Good Economic	Bad Economic	Expected
	Conditions	Conditions	Value
Expand	\$0	\$50,000	\$20,000
Renovate	\$60,000	\$30,000	\$48,000
Do nothing	\$80,000	\$0	\$48,000

- Minimum expected regret = \$20,000. Decision = Expand!
- Minimum expected loss decision will always be equal to maximum expected value decision.

- Expected opportunity loss (EOL) = expected value of regret for each decision.
- Regrets Table:

Decision	Good Economic	Bad Economic	Expected
	Conditions	Conditions	Value
Expand	\$0	\$50,000	\$20,000
Renovate	\$60,000	\$30,000	\$48,000
Do nothing	\$80,000	\$0	\$48,000


- Minimum expected regret = \$20,000. Decision = Expand!
- Minimum expected loss decision will always be equal to maximum expected value decision.

- Expected opportunity loss (EOL) = expected value of regret for each decision.
- Regrets Table:

Decision	Good Economic	Bad Economic	Expected
	Conditions	Conditions	Value
Expand	\$0	\$50,000	\$20,000
Renovate	\$60,000	\$30,000	\$48,000
Do nothing	\$80,000	\$0	\$48,000

- Minimum expected regret = \$20,000. Decision = Expand!
- Minimum expected loss decision will always be equal to maximum expected value decision.

Expected Opportunity Loss

- Expected opportunity loss (EOL) = expected value of regret for each decision.
- Regrets Table:

Decision	Good Economic	Bad Economic	Expected
	Conditions	Conditions	Value
Expand	\$0	\$50,000	\$20,000
Renovate	\$60,000	\$30,000	\$48,000
Do nothing	\$80,000	\$0	\$48,000

- Minimum expected regret = \$20,000. Decision = Expand!
- Minimum expected loss decision will always be equal to maximum expected value decision.

- Suppose you could purchase "perfect information" about what will happen. How much would you pay?
- If you were told good economic conditions:
 - Decision = Expand, Profit = \$150,000
- If you were told bad economic conditions:
 - Decision = Do nothing, Profit = \$40,000.
- A priori expected profit (given you will make a perfect decision):
 - Expected Profit = (0.6)(\$150,000) + (0.4)(\$40,000) = \$106.000.
- Expected profit from maximizing expected value = \$86,000.
- \bullet EVPI = \$106,000 \$86,000 = \$20,000.
- Not coincidentally, EVPI = EOL.

- Suppose you could purchase "perfect information" about what will happen. How much would you pay?
- If you were told good economic conditions:
 - Decision = Expand, Profit = \$150,000.
- If you were told bad economic conditions:
 - Decision = Do nothing, Profit = \$40,000.
- A priori expected profit (given you will make a perfect decision):
 - Expected Profit = (0.6)(\$150,000) + (0.4)(\$40,000) = \$106,000.
- Expected profit from maximizing expected value = \$86,000.
- \bullet EVPI = \$106,000 \$86,000 = \$20,000.
- Not coincidentally, EVPI = EOL.

- Suppose you could purchase "perfect information" about what will happen. How much would you pay?
- If you were told good economic conditions:
 - Decision = Expand, Profit = \$150,000.
- If you were told bad economic conditions:
 - Decision = Do nothing, Profit = \$40,000.
- A priori expected profit (given you will make a perfect decision):
 - Expected Profit = (0.6)(\$150,000) + (0.4)(\$40,000) = \$106,000.
- Expected profit from maximizing expected value = \$86,000.
- \bullet EVPI = \$106,000 \$86,000 = \$20,000.
- Not coincidentally, EVPI = EOL.

Expected Value of Perfect Information

- Suppose you could purchase "perfect information" about
 - If you were told good economic conditions:
 - Decision = Expand, Profit = \$150,000.

what will happen. How much would you pay?

- If you were told bad economic conditions:
 - Decision = Do nothing, Profit = \$40,000.
- A priori expected profit (given you will make a perfect decision):
 - Expected Profit = (0.6)(\$150,000) + (0.4)(\$40,000) = \$106,000.
- Expected profit from maximizing expected value = \$86,000.
- \bullet EVPI = \$106,000 \$86,000 = \$20,000.
- Not coincidentally, EVPI = EOL.

- Suppose you could purchase "perfect information" about what will happen. How much would you pay?
- If you were told good economic conditions:
 - Decision = Expand, Profit = \$150,000.
- If you were told bad economic conditions:
 - Decision = Do nothing, Profit = \$40,000.
- A priori expected profit (given you will make a perfect decision):
 - Expected Profit = (0.6)(\$150,000) + (0.4)(\$40,000) = \$106.000.
- Expected profit from maximizing expected value = \$86,000.
- \bullet EVPI = \$106,000 \$86,000 = \$20,000.
- Not coincidentally, EVPI = EOL.

- Suppose you could purchase "perfect information" about what will happen. How much would you pay?
- If you were told good economic conditions:
 - Decision = Expand, Profit = \$150,000.
- If you were told bad economic conditions:
 - Decision = Do nothing, Profit = \$40,000.
- A priori expected profit (given you will make a perfect decision):
 - Expected Profit = (0.6)(\$150,000) + (0.4)(\$40,000) = \$106,000.
- Expected profit from maximizing expected value = \$86,000.
- \bullet EVPI = \$106,000 \$86,000 = \$20,000.
- Not coincidentally, EVPI = EOL.

- Suppose you could purchase "perfect information" about what will happen. How much would you pay?
- If you were told good economic conditions:
 - Decision = Expand, Profit = \$150,000.
- If you were told bad economic conditions:
 - Decision = Do nothing, Profit = \$40,000.
- A priori expected profit (given you will make a perfect decision):
 - Expected Profit = (0.6)(\$150,000) + (0.4)(\$40,000) = \$106,000.
- Expected profit from maximizing expected value = \$86,000.
- \bullet EVPI = \$106,000 \$86,000 = \$20,000.
- Not coincidentally, EVPI = EOL.

- Suppose you could purchase "perfect information" about what will happen. How much would you pay?
- If you were told good economic conditions:
 - Decision = Expand, Profit = \$150,000.
- If you were told bad economic conditions:
 - Decision = Do nothing, Profit = \$40,000.
- A priori expected profit (given you will make a perfect decision):
 - Expected Profit = (0.6)(\$150,000) + (0.4)(\$40,000) = \$106,000.
- Expected profit from maximizing expected value = \$86,000.
- \bullet EVPI = \$106,000 \$86,000 = \$20,000.
- Not coincidentally, EVPI = EOL.

Expected Value of Perfect Information

- Suppose you could purchase "perfect information" about what will happen. How much would you pay?
- If you were told good economic conditions:
 - Decision = Expand, Profit = \$150,000.
- If you were told bad economic conditions:
 - Decision = Do nothing, Profit = \$40,000.
- A priori expected profit (given you will make a perfect decision):
 - Expected Profit = (0.6)(\$150,000) + (0.4)(\$40,000) = \$106,000.
- Expected profit from maximizing expected value = \$86,000.
- \bullet EVPI = \$106,000 \$86,000 = \$20,000.
- Not coincidentally, EVPI = EOL.

Expected Value of Perfect Information

- Suppose you could purchase "perfect information" about what will happen. How much would you pay?
- If you were told good economic conditions:
 - Decision = Expand, Profit = \$150,000.
- If you were told bad economic conditions:
 - Decision = Do nothing, Profit = \$40,000.
- A priori expected profit (given you will make a perfect decision):
 - Expected Profit = (0.6)(\$150,000) + (0.4)(\$40,000) = \$106,000.
- Expected profit from maximizing expected value = \$86,000.
- \bullet EVPI = \$106,000 \$86,000 = \$20,000.
- Not coincidentally, EVPI = EOL.

Bayesian Analysis

- Bayesian analysis: decision making using additional information which alter conditional probabilities.
- Suppose P(good economic conditions), P(bad economic conditions) are simply based on past history.
- Suppose your the Minneapolis Federal Reserve Bank issues an economic report (which they do) that indicates whether they have a positive economic outlook or a negative economic outlook.
- This is useful information, but not perfect information.
- Define the following events:
 - P: positive economic report
 - N: negative economic report
 - G: Good economic conditions
 - B: Bad economic conditions.
- Of course, P(P) = 1 P(N), P(G) = 1 P(B).

Bayesian Analysis

- Bayesian analysis: decision making using additional information which alter conditional probabilities.
- Suppose P(good economic conditions), P(bad economic conditions) are simply based on past history.
- Suppose your the Minneapolis Federal Reserve Bank issues an economic report (which they do) that indicates whether they have a positive economic outlook or a negative economic outlook.
- This is useful information, but not perfect information.
- Define the following events:
 - P: positive economic report.
 - N: negative economic report
 - G: Good economic conditions
 - B: Bad economic conditions
- Of course, P(P) = 1 P(N), P(G) = 1 P(B).

- Bayesian analysis: decision making using additional information which alter conditional probabilities.
- Suppose P(good economic conditions), P(bad economic conditions) are simply based on past history.
- Suppose your the Minneapolis Federal Reserve Bank issues an economic report (which they do) that indicates whether they have a positive economic outlook or a negative economic outlook.
- This is useful information, but not perfect information.
- Define the following events:
 - P: positive economic report.
 - N: negative economic report
 - G: Good economic conditions.
 - B: Bad economic conditions.
- Of course, P(P) = 1 P(N), P(G) = 1 P(B).

- Bayesian analysis: decision making using additional information which alter conditional probabilities.
- Suppose P(good economic conditions), P(bad economic conditions) are simply based on past history.
- Suppose your the Minneapolis Federal Reserve Bank issues an economic report (which they do) that indicates whether they have a positive economic outlook or a negative economic outlook.
- This is useful information, but not perfect information.
- Define the following events:
- P: positive economic report.
 - N: negative economic report
 - G: Good economic conditions.
 - B: Bad economic conditions.
- Of course, P(P) = 1 P(N), P(G) = 1 P(B).

- Bayesian analysis: decision making using additional information which alter conditional probabilities.
- Suppose P(good economic conditions), P(bad economic conditions) are simply based on past history.
- Suppose your the Minneapolis Federal Reserve Bank issues an economic report (which they do) that indicates whether they have a positive economic outlook or a negative economic outlook.
- This is useful information, but not perfect information.
- Define the following events:
 - P: positive economic report.
 - N: negative economic report.
 - G: Good economic conditions.
 - B: Bad economic conditions.
- Of course, P(P) = 1 P(N), P(G) = 1 P(B).

- Bayesian analysis: decision making using additional information which alter conditional probabilities.
- Suppose P(good economic conditions), P(bad economic conditions) are simply based on past history.
- Suppose your the Minneapolis Federal Reserve Bank issues an economic report (which they do) that indicates whether they have a positive economic outlook or a negative economic outlook.
- This is useful information, but not perfect information.
- Define the following events:
 - P: positive economic report.
 - N: negative economic report.
 - G: Good economic conditions.
 - B: Bad economic conditions.
- Of course, P(P) = 1 P(N), P(G) = 1 P(B).

- Bayesian analysis: decision making using additional information which alter conditional probabilities.
- Suppose P(good economic conditions), P(bad economic conditions) are simply based on past history.
- Suppose your the Minneapolis Federal Reserve Bank issues an economic report (which they do) that indicates whether they have a positive economic outlook or a negative economic outlook.
- This is useful information, but not perfect information.
- Define the following events:
 - P: positive economic report.
 - N: negative economic report.
 - G: Good economic conditions.
 - B: Bad economic conditions.
- Of course, P(P) = 1 P(N), P(G) = 1 P(B).

- Bayesian analysis: decision making using additional information which alter conditional probabilities.
- Suppose P(good economic conditions), P(bad economic conditions) are simply based on past history.
- Suppose your the Minneapolis Federal Reserve Bank issues an economic report (which they do) that indicates whether they have a positive economic outlook or a negative economic outlook.
- This is useful information, but not perfect information.
- Define the following events:
 - P: positive economic report.
 - N: negative economic report.
 - G: Good economic conditions.
 - B: Bad economic conditions.
- Of course, P(P) = 1 P(N), P(G) = 1 P(B).

- Bayesian analysis: decision making using additional information which alter conditional probabilities.
- Suppose P(good economic conditions), P(bad economic conditions) are simply based on past history.
- Suppose your the Minneapolis Federal Reserve Bank issues an economic report (which they do) that indicates whether they have a positive economic outlook or a negative economic outlook.
- This is useful information, but not perfect information.
- Define the following events:
 - P: positive economic report.
 - N: negative economic report.
 - G: Good economic conditions.
 - B: Bad economic conditions.

• Of course, P(P) = 1 - P(N), P(G) = 1 - P(B).

- Bayesian analysis: decision making using additional information which alter conditional probabilities.
- Suppose P(good economic conditions), P(bad economic conditions) are simply based on past history.
- Suppose your the Minneapolis Federal Reserve Bank issues an economic report (which they do) that indicates whether they have a positive economic outlook or a negative economic outlook.
- This is useful information, but not perfect information.
- Define the following events:
 - P: positive economic report.
 - N: negative economic report.
 - G: Good economic conditions.
 - B: Bad economic conditions.
- Of course, P(P) = 1 P(N), P(G) = 1 P(B).

- Suppose past experience indicates the Federal Reserve report accurately forecasts...
 - good economic conditions 80% of the time, and
 - bad economic conditions 90% of the time.
- Conditional probabilities:

•
$$P(P|g) = 0.8$$
, $P(N|g) = 0.2$.
• $P(N|b) = 0.9$, $P(P|b) = 0.1$.

• Suppose a positive report came out. We want to know P(g|P):

$$P(g|P) = \frac{P(g \cap P)}{P(P)} = \frac{P(P|g)P(g)}{P(P|g)P(g) + P(P|b)P(b)}$$
$$= \frac{(0.8)(0.6)}{(0.8)(0.6) + (0.1)(0.4)} = 0.923$$

- Suppose past experience indicates the Federal Reserve report accurately forecasts...
 - good economic conditions 80% of the time, and
 - bad economic conditions 90% of the time.
- Conditional probabilities:
 - P(P|g) = 0.8, P(N|g) = 0.2. • P(N|b) = 0.9, P(P|b) = 0.1.
- Suppose a positive report came out. We want to know P(g|P):

$$P(g|P) = \frac{P(g \cap P)}{P(P)} = \frac{P(P|g)P(g)}{P(P|g)P(g) + P(P|b)P(b)}$$

 $=\frac{(0.8)(0.6)}{(0.8)(0.6)+(0.1)(0.4)}=0.923$

- Suppose past experience indicates the Federal Reserve report accurately forecasts...
 - good economic conditions 80% of the time, and
 - bad economic conditions 90% of the time.
- Conditional probabilities:

```
• P(P|g) = 0.8, P(N|g) = 0.2.
• P(N|b) = 0.9, P(P|b) = 0.1.
```

• Suppose a positive report came out. We want to know P(g|P):

$$P(g|P) = \frac{P(g \cap P)}{P(P)} = \frac{P(P|g)P(g)}{P(P|g)P(g) + P(P|b)P(b)}$$
$$= \frac{(0.8)(0.6)}{(0.8)(0.6)} = 0.923$$

- Suppose past experience indicates the Federal Reserve report accurately forecasts...
 - good economic conditions 80% of the time, and
 - bad economic conditions 90% of the time.
- Conditional probabilities:
 - P(P|g) = 0.8, P(N|g) = 0.2.
 - P(N|b) = 0.9, P(P|b) = 0.1.
- Suppose a positive report came out. We want to know P(g|P):

$$P(g|P) = \frac{P(g \cap P)}{P(P)} = \frac{P(P|g)P(g)}{P(P|g)P(g) + P(P|b)P(b)}$$

$$=\frac{(0.8)(0.6)}{(0.8)(0.6)+(0.1)(0.4)}=0.923$$

- Suppose past experience indicates the Federal Reserve report accurately forecasts...
 - good economic conditions 80% of the time, and
 - bad economic conditions 90% of the time.
- Conditional probabilities:
 - P(P|g) = 0.8, P(N|g) = 0.2.
 - P(N|b) = 0.9, P(P|b) = 0.1.
- Suppose a positive report came out. We want to know P(g|P):

$$P(g|P) = \frac{P(g \cap P)}{P(P)} = \frac{P(P|g)P(g)}{P(P|g)P(g) + P(P|b)P(b)}$$

 $=\frac{(0.8)(0.0)}{(0.8)(0.6)+(0.1)(0.4)}=0.923$

- Suppose past experience indicates the Federal Reserve report accurately forecasts...
 - good economic conditions 80% of the time, and
 - bad economic conditions 90% of the time.
- Conditional probabilities:
 - P(P|g) = 0.8, P(N|g) = 0.2.
 - P(N|b) = 0.9, P(P|b) = 0.1.
- Suppose a positive report came out. We want to know P(g|P):

$$P(g|P) = \frac{P(g \cap P)}{P(P)} = \frac{P(P|g)P(g)}{P(P|g)P(g) + P(P|b)P(b)}$$

 $=\frac{(0.8)(0.6)}{(0.8)(0.6)+(0.1)(0.4)}=0.923$

- Suppose past experience indicates the Federal Reserve report accurately forecasts...
 - good economic conditions 80% of the time, and
 - bad economic conditions 90% of the time.
- Conditional probabilities:
 - P(P|g) = 0.8, P(N|g) = 0.2.
 - P(N|b) = 0.9, P(P|b) = 0.1.
- Suppose a positive report came out. We want to know P(g|P):

$$P(g|P) = \frac{P(g \cap P)}{P(P)} = \frac{P(P|g)P(g)}{P(P|g)P(g) + P(P|b)P(b)}$$
$$= \frac{(0.8)(0.6)}{(0.8)(0.6) + (0.1)(0.4)} = 0.923$$

- Suppose past experience indicates the Federal Reserve report accurately forecasts...
 - good economic conditions 80% of the time, and
 - bad economic conditions 90% of the time.
- Conditional probabilities:
 - P(P|g) = 0.8, P(N|g) = 0.2.
 - P(N|b) = 0.9, P(P|b) = 0.1.
- Suppose a positive report came out. We want to know P(g|P):

$$P(g|P) = \frac{P(g \cap P)}{P(P)} = \frac{P(P|g)P(g)}{P(P|g)P(g) + P(P|b)P(b)}$$
$$= \frac{(0.8)(0.6)}{(0.8)(0.6) + (0.1)(0.4)} = 0.923$$

- Now use P(g|P) and P(b|P) to find decision that maximizes expected value. What is the expected value?
- What would your decision be if there was a negative report? What is the expected value?

- Now use P(g|P) and P(b|P) to find decision that maximizes expected value. What is the expected value?
- What would your decision be if there was a negative report? What is the expected value?