Introduction to Probability

BUS 735: Business Decision Methods and Research

<ロ> (日) (日) (日) (日) (日)

BUS 735: Business Decision Methods and Research Introduction to Probability

Goals of this section

- Learn basics of probability.
- Learn about how a boring and complicated formula can really mean a lot.

イロト イヨト イヨト イヨト

Probability of Events Conditional Probability

Basic Probability

2/ 28

- **Probability:** numeric value between 0 and 1 (or 0% and 100%) representing the chance, likelihood, or possibility some event will occur.
- Event: some possible (or even impossible) outcome occurring.
 - Denote events with capital English letters.
- Example:
 - A: A new restaurant will earn positive profits during its first year.
 - P(A) = 0.2 means there is a 20% chance that a new restaurant will earn profits in its first year.
- **A-priori probability:** objective probability of an event that can be stated *before* the event occurs.
- **Relative frequency probability:** long-run expected probabilities based on past data.
- Subjective probability: estimated probability based on personal belief, experience, or knowledge of a situation.

Probability of Events Conditional Probability

- **Probability:** numeric value between 0 and 1 (or 0% and 100%) representing the chance, likelihood, or possibility some event will occur.
- Event: some possible (or even impossible) outcome occurring.
 - Denote events with capital English letters.
- Example:
 - A: A new restaurant will earn positive profits during its first year.
 - P(A) = 0.2 means there is a 20% chance that a new restaurant will earn profits in its first year.
- **A-priori probability:** objective probability of an event that can be stated *before* the event occurs.
- **Relative frequency probability:** long-run expected probabilities based on past data.
- Subjective probability: estimated probability based on personal belief, experience, or knowledge of a situation.

Probability of Events Conditional Probability

- **Probability:** numeric value between 0 and 1 (or 0% and 100%) representing the chance, likelihood, or possibility some event will occur.
- Event: some possible (or even impossible) outcome occurring.
 - Denote events with capital English letters.
- Example:
 - A: A new restaurant will earn positive profits during its first year.
 - P(A) = 0.2 means there is a 20% chance that a new restaurant will earn profits in its first year.
- **A-priori probability:** objective probability of an event that can be stated *before* the event occurs.
- **Relative frequency probability:** long-run expected probabilities based on past data.
- Subjective probability: estimated probability based on personal belief, experience, or knowledge of a situation.

Probability of Events Conditional Probability

Basic Probability

- **Probability:** numeric value between 0 and 1 (or 0% and 100%) representing the chance, likelihood, or possibility some event will occur.
- Event: some possible (or even impossible) outcome occurring.
 - Denote events with capital English letters.
- Example:
 - A: A new restaurant will earn positive profits during its first year.
 - *P*(*A*) = 0.2 means there is a 20% chance that a new restaurant will earn profits in its first year.
- **A-priori probability:** objective probability of an event that can be stated *before* the event occurs.
- **Relative frequency probability:** long-run expected probabilities based on past data.
- Subjective probability: estimated probability based on personal belief, experience, or knowledge of a situation.

-∢ ≣ ≯

Probability of Events Conditional Probability

- **Probability:** numeric value between 0 and 1 (or 0% and 100%) representing the chance, likelihood, or possibility some event will occur.
- Event: some possible (or even impossible) outcome occurring.
 - Denote events with capital English letters.
- Example:
 - A: A new restaurant will earn positive profits during its first year.
 - P(A) = 0.2 means there is a 20% chance that a new restaurant will earn profits in its first year.
- **A-priori probability:** objective probability of an event that can be stated *before* the event occurs.
- **Relative frequency probability:** long-run expected probabilities based on past data.
- Subjective probability: estimated probability based on personal belief, experience, or knowledge of a situation.

Probability of Events Conditional Probability

- **Probability:** numeric value between 0 and 1 (or 0% and 100%) representing the chance, likelihood, or possibility some event will occur.
- Event: some possible (or even impossible) outcome occurring.
 - Denote events with capital English letters.
- Example:
 - A: A new restaurant will earn positive profits during its first year.
 - *P*(*A*) = 0.2 means there is a 20% chance that a new restaurant will earn profits in its first year.
- **A-priori probability:** objective probability of an event that can be stated *before* the event occurs.
- **Relative frequency probability:** long-run expected probabilities based on past data.
- Subjective probability: estimated probability based on personal belief, experience, or knowledge of a situation.

Probability of Events Conditional Probability

- **Probability:** numeric value between 0 and 1 (or 0% and 100%) representing the chance, likelihood, or possibility some event will occur.
- Event: some possible (or even impossible) outcome occurring.
 - Denote events with capital English letters.
- Example:
 - A: A new restaurant will earn positive profits during its first year.
 - *P*(*A*) = 0.2 means there is a 20% chance that a new restaurant will earn profits in its first year.
- **A-priori probability:** objective probability of an event that can be stated *before* the event occurs.
- **Relative frequency probability:** long-run expected probabilities based on past data.
- Subjective probability: estimated probability based on personal belief, experience, or knowledge of a situation.

Probability of Events Conditional Probability

- **Probability:** numeric value between 0 and 1 (or 0% and 100%) representing the chance, likelihood, or possibility some event will occur.
- Event: some possible (or even impossible) outcome occurring.
 - Denote events with capital English letters.
- Example:
 - A: A new restaurant will earn positive profits during its first year.
 - *P*(*A*) = 0.2 means there is a 20% chance that a new restaurant will earn profits in its first year.
- **A-priori probability:** objective probability of an event that can be stated *before* the event occurs.
- **Relative frequency probability:** long-run expected probabilities based on past data.
- Subjective probability: estimated probability based on personal belief, experience, or knowledge of a situation.

Probability of Events Conditional Probability

- **Probability:** numeric value between 0 and 1 (or 0% and 100%) representing the chance, likelihood, or possibility some event will occur.
- Event: some possible (or even impossible) outcome occurring.
 - Denote events with capital English letters.
- Example:
 - A: A new restaurant will earn positive profits during its first year.
 - P(A) = 0.2 means there is a 20% chance that a new restaurant will earn profits in its first year.
- **A-priori probability:** objective probability of an event that can be stated *before* the event occurs.
- **Relative frequency probability:** long-run expected probabilities based on past data.
- Subjective probability: estimated probability based on personal belief, experience, or knowledge of a situation.

Probability of Events Conditional Probability

イロン イヨン イヨン イヨン

Contingency Table

3/ 28

	Customer Owns a DVR		
Type of TV	Yes	No	Total
HDTV	38	42	80
Regular TV	70	150	220
Total	108	192	300

- Define Event A: Customer owns an HDTV.
- What is P(A)?

Joint Events

Probability of Events Conditional Probability

<ロ> (日) (日) (日) (日) (日)

- Joint Event: is an event that is composed of two or more events.
- Define event C as any event in either A or B.
 - Notation for event C: $C = A \cup B$
 - Notation for probability of event C: $P(C) = P(A \cup B)$.
- Define event C as any event in A and B.
 - Notation for event C: $C = A \cap B$
 - Notation for probability of event C: $P(C) = P(A \cap B)$.

Joint Events

Probability of Events Conditional Probability

<ロ> (日) (日) (日) (日) (日)

- Joint Event: is an event that is composed of two or more events.
- Define event C as any event in either A or B.
 - Notation for event C: $C = A \cup B$
 - Notation for probability of event C: $P(C) = P(A \cup B)$.
- Define event C as any event in A and B.
 - Notation for event C: $C = A \cap B$
 - Notation for probability of event C: $P(C) = P(A \cap B)$.

Joint Events

Probability of Events Conditional Probability

<ロ> (日) (日) (日) (日) (日)

- Joint Event: is an event that is composed of two or more events.
- Define event C as any event in either A or B.
 - Notation for event C: $C = A \cup B$
 - Notation for probability of event C: $P(C) = P(A \cup B)$.
- Define event C as any event in A and B.
 - Notation for event C: $C = A \cap B$
 - Notation for probability of event C: $P(C) = P(A \cap B)$.

Joint Events

Probability of Events Conditional Probability

- Joint Event: is an event that is composed of two or more events.
- Define event C as any event in either A or B.
 - Notation for event C: $C = A \cup B$
 - Notation for probability of event C: $P(C) = P(A \cup B)$.
- Define event C as any event in A and B.
 - Notation for event C: $C = A \cap B$
 - Notation for probability of event C: $P(C) = P(A \cap B)$.

Joint Events

Probability of Events Conditional Probability

- Joint Event: is an event that is composed of two or more events.
- Define event C as any event in either A or B.
 - Notation for event C: $C = A \cup B$
 - Notation for probability of event C: $P(C) = P(A \cup B)$.
- Define event C as any event in A and B.
 - Notation for event C: $C = A \cap B$
 - Notation for probability of event C: $P(C) = P(A \cap B)$.

Joint Events

Probability of Events Conditional Probability

- Joint Event: is an event that is composed of two or more events.
- Define event C as any event in either A or B.
 - Notation for event C: $C = A \cup B$
 - Notation for probability of event C: $P(C) = P(A \cup B)$.
- Define event C as any event in A and B.
 - Notation for event C: $C = A \cap B$
 - Notation for probability of event C: $P(C) = P(A \cap B)$.

Joint Events

Probability of Events Conditional Probability

イロト イポト イヨト イヨト

- Joint Event: is an event that is composed of two or more events.
- Define event C as any event in either A or B.
 - Notation for event C: $C = A \cup B$
 - Notation for probability of event C: $P(C) = P(A \cup B)$.
- Define event C as any event in A and B.
 - Notation for event C: $C = A \cap B$
 - Notation for probability of event C: $P(C) = P(A \cap B)$.

Probability of Events Conditional Probability

- The **complement** of an event, A, is the outcome of anything *besides* A occurring.
- Notation: $A' = A^c$ = complement of event A.
- P(A') = 1 P(A).
- Example: what is the complement of Event A: a newborn baby is a female.

Probability of Events Conditional Probability

イロト イヨト イヨト イヨト

- The **complement** of an event, A, is the outcome of anything *besides* A occurring.
- Notation: $A' = A^c$ = complement of event A.
- P(A') = 1 P(A).
- Example: what is the complement of Event A: a newborn baby is a female.

Probability of Events Conditional Probability

イロト イヨト イヨト イヨト

- The **complement** of an event, A, is the outcome of anything *besides* A occurring.
- Notation: $A' = A^c = \text{complement of event A}$.
- P(A') = 1 P(A).
- Example: what is the complement of Event A: a newborn baby is a female.

Probability of Events Conditional Probability

イロト イポト イヨト イヨト

- The **complement** of an event, A, is the outcome of anything *besides* A occurring.
- Notation: $A' = A^c$ = complement of event A.
- P(A') = 1 P(A).
- Example: what is the complement of Event A: a newborn baby is a female.

Probability of Events Conditional Probability

Mutually Exclusive Events

- Two events, A and B, are **mutually exclusive** if it is impossible for both A and B to occur at the same time.
- Are the following mutually exclusive?
 - Event A: A person is currently 8 years old. Event B: A person voted for John McCain in the last presidential election.
 - Event A: A person plays football in high school. Event B: A person plays basketball in high school.
 - Event A, Event A'.
 - Event A: We will go out to eat tonight. Event B: We are going out to eat tomorrow night.

Probability of Events Conditional Probability

Mutually Exclusive Events

- Two events, A and B, are mutually exclusive if it is impossible for both A and B to occur at the same time.
- Are the following mutually exclusive?
 - Event A: A person is currently 8 years old. Event B: A person voted for John McCain in the last presidential election.
 - Event A: A person plays football in high school. Event B: A person plays basketball in high school.
 - Event A, Event A'.
 - Event A: We will go out to eat tonight. Event B: We are going out to eat tomorrow night.

Probability of Events Conditional Probability

Mutually Exclusive Events

- Two events, A and B, are mutually exclusive if it is impossible for both A and B to occur at the same time.
- Are the following mutually exclusive?
 - Event A: A person is currently 8 years old. Event B: A person voted for John McCain in the last presidential election.
 - Event A: A person plays football in high school. Event B: A person plays basketball in high school.
 - Event A, Event A'.
 - Event A: We will go out to eat tonight. Event B: We are going out to eat tomorrow night.

(ロ) (部) (E) (E)

Probability of Events Conditional Probability

Mutually Exclusive Events

- Two events, A and B, are mutually exclusive if it is impossible for both A and B to occur at the same time.
- Are the following mutually exclusive?
 - Event A: A person is currently 8 years old. Event B: A person voted for John McCain in the last presidential election.
 - Event A: A person plays football in high school. Event B: A person plays basketball in high school.
 - Event A, Event A'.
 - Event A: We will go out to eat tonight. Event B: We are going out to eat tomorrow night.

イロト イヨト イヨト イヨト

Probability of Events Conditional Probability

Mutually Exclusive Events

- Two events, A and B, are mutually exclusive if it is impossible for both A and B to occur at the same time.
- Are the following mutually exclusive?
 - Event A: A person is currently 8 years old. Event B: A person voted for John McCain in the last presidential election.
 - Event A: A person plays football in high school. Event B: A person plays basketball in high school.
 - Event A, Event A'.
 - Event A: We will go out to eat tonight. Event B: We are going out to eat tomorrow night.

イロト イポト イヨト イヨト

Probability of Events Conditional Probability

Mutually Exclusive Events

- Two events, A and B, are **mutually exclusive** if it is impossible for both A and B to occur at the same time.
- Are the following mutually exclusive?
 - Event A: A person is currently 8 years old. Event B: A person voted for John McCain in the last presidential election.
 - Event A: A person plays football in high school. Event B: A person plays basketball in high school.
 - Event A, Event A'.
 - Event A: We will go out to eat tonight. Event B: We are going out to eat tomorrow night.

イロト イポト イヨト イヨト

Probability of Events Conditional Probability

イロト イヨト イヨト イヨト

	Customer Owns a DVR		
Type of TV	Yes	No	Total
HDTV	38	42	80
Regular TV	70	150	220
Total	108	192	300

- Define Event A: Customer owns an HDTV.
- Define Event B: Customer owns a DVR.
- Define Event $C = A \cap B$.
- What is P(C)?
- Define Event $D = A \cup B$.
- What is P(D)?

イロト イヨト イヨト イヨト

	Customer Owns a DVR		
Type of TV	Yes	No	Total
HDTV	38	42	80
Regular TV	70	150	220
Total	108	192	300

- Define Event A: Customer owns an HDTV.
- Define Event B: Customer owns a DVR.
- Define Event $C = A \cap B$.
- What is P(C)?
- Define Event $D = A \cup B$.
- What is P(D)?

イロト イヨト イヨト イヨト

	Customer Owns a DVR		
Type of TV	Yes	No	Total
HDTV	38	42	80
Regular TV	70	150	220
Total	108	192	300

- Define Event A: Customer owns an HDTV.
- Define Event B: Customer owns a DVR.
- Define Event $C = A \cap B$.
- What is P(C)?
- Define Event $D = A \cup B$.
- What is P(D)?

イロト イヨト イヨト イヨト

	Customer Owns a DVR		
Type of TV	Yes	No	Total
HDTV	38	42	80
Regular TV	70	150	220
Total	108	192	300

- Define Event A: Customer owns an HDTV.
- Define Event B: Customer owns a DVR.
- Define Event $C = A \cap B$.
- What is P(C)?
- Define Event $D = A \cup B$.
- What is P(D)?

イロト イヨト イヨト イヨト

Contingency Table

	Customer Owns a DVR		
Type of TV	Yes	No	Total
HDTV	38	42	80
Regular TV	70	150	220
Total	108	192	300

- Define Event A: Customer owns an HDTV.
- Define Event B: Customer owns a DVR.
- Define Event $C = A \cap B$.
- What is P(C)?
- Define Event $D = A \cup B$.

• What is P(D)?

(ロ) (部) (E) (E)

	Customer Owns a DVR		
Type of TV	Yes	No	Total
HDTV	38	42	80
Regular TV	70	150	220
Total	108	192	300

- Define Event A: Customer owns an HDTV.
- Define Event B: Customer owns a DVR.
- Define Event $C = A \cap B$.
- What is P(C)?
- Define Event $D = A \cup B$.
- What is P(D)?

Probability of Events Conditional Probability

Venn Diagram

- **Venn diagram:** visualization of all possible events. The areas in the diagram represent the probabilities of those events.
- S: Event that encompasses all possible outcomes.
- Entire area of the left hand circle is P(B).
- Entire area of the right hand circle is event P(A).
- The area that is in both of the circles is $P(A \cap B)$.
Probability of Events Conditional Probability

- **Venn diagram:** visualization of all possible events. The areas in the diagram represent the probabilities of those events.
- S: Event that encompasses all possible outcomes.
- Entire area of the left hand circle is P(B).
- Entire area of the right hand circle is event P(A).
- The area that is in both of the circles is $P(A \cap B)$.

Probability of Events Conditional Probability

- **Venn diagram:** visualization of all possible events. The areas in the diagram represent the probabilities of those events.
- S: Event that encompasses all possible outcomes.
- Entire area of the left hand circle is P(B).
- Entire area of the right hand circle is event P(A).
- The area that is in both of the circles is $P(A \cap B)$.

Probability of Events Conditional Probability

- **Venn diagram:** visualization of all possible events. The areas in the diagram represent the probabilities of those events.
- S: Event that encompasses all possible outcomes.
- Entire area of the left hand circle is P(B).
- Entire area of the right hand circle is event P(A).
- The area that is in both of the circles is $P(A \cap B)$

Probability of Events Conditional Probability

- **Venn diagram:** visualization of all possible events. The areas in the diagram represent the probabilities of those events.
- S: Event that encompasses all possible outcomes.
- Entire area of the left hand circle is P(B).
- Entire area of the right hand circle is event P(A).
- The area that is in both of the circles is $P(A \cap B)$.

Probability of Events Conditional Probability

• From the Venn Diagram we can see that,

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

イロト イヨト イヨト イヨト

• From the Venn Diagram we can see that,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Image: A matrix

• From the Venn Diagram we can see that,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

. ,			, ,	
	Customer Owns a DVR			
Type of TV	Yes	No	Total	
HDTV	38	42	80	
Regular TV	70	150	220	
Total	108	192	300	

• From the Venn Diagram we can see that,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

	Customer Owns a DVR		
Type of TV	Yes	No	Total
HDTV	38	42	80
Regular TV	70	150	220
Total	108	192	300

Probability of Events Conditional Probability

Conditional probability

10/28

- **Conditional probability**: the probability of an event, A, with the additional information that some other event B has already occurred.
- Example:
 - What is the probability a person is female?
 - What is the probability a person is female, given he/she is a UW-L college student?

Conditional probability

- **Conditional probability**: the probability of an event, A, with the additional information that some other event B has already occurred.
- Example:
 - What is the probability a person is female?
 - What is the probability a person is female, given he/she is a UW-L college student?

イロト イポト イラト イラト

Conditional probability

- **Conditional probability**: the probability of an event, A, with the additional information that some other event B has already occurred.
- Example:
 - What is the probability a person is female? Define event A: a person is a female.
 - What is the probability a person is female, given he/she is a UW-L college student?

イロト イポト イラト イラト

Conditional probability

- **Conditional probability**: the probability of an event, A, with the additional information that some other event B has already occurred.
- Example:
 - What is the probability a person is female? Define event A: a person is a female. P(A) = 0.5
 - What is the probability a person is female, given he/she is a UW-L college student?

イロト イポト イラト イラト

Conditional probability

- **Conditional probability**: the probability of an event, A, with the additional information that some other event B has already occurred.
- Example:
 - What is the probability a person is female? Define event A: a person is a female. P(A) = 0.5
 - What is the probability a person is female, given he/she is a UW-L college student?

Conditional probability

- **Conditional probability**: the probability of an event, A, with the additional information that some other event B has already occurred.
- Example:
 - What is the probability a person is female? Define event A: a person is a female. P(A) = 0.5
 - What is the probability a person is female, given he/she is a UW-L college student?

イロト イポト イヨト イヨ

Define event B: a person is a UW-L college student.

Conditional probability

- **Conditional probability**: the probability of an event, A, with the additional information that some other event B has already occurred.
- Example:
 - What is the probability a person is female? Define event A: a person is a female. P(A) = 0.5
 - What is the probability a person is female, given he/she is a UW-L college student? Define event B: a person is a UW-L college student.

イロト イポト イヨト イヨ

$$P(A|B) = 0.6$$

Probability of Events Conditional Probability

イロト イヨト イヨト イヨト

Independence

11/28

- Two events A and B are **independent** if knowledge that A happened does not affect P(B), or if knowledge that B happened does not effect P(A).
- In the example above, is being female and being a UW-L college student independent?
- Is owning an HDTV and DVR independent?
- Is the event that someone smokes and the event someone has lung cancer independent?
- Suppose a coin is flipped twice. Is the event the first flip is heads and the event the second flip is heads independent?
- If A and B are independent, then P(A|B) = P(A) and P(B|A) = P(B).

Probability of Events Conditional Probability

イロト イヨト イヨト イヨト

- Two events A and B are independent if knowledge that A happened does not affect P(B), or if knowledge that B happened does not effect P(A).
- In the example above, is being female and being a UW-L college student independent?
- Is owning an HDTV and DVR independent?
- Is the event that someone smokes and the event someone has lung cancer independent?
- Suppose a coin is flipped twice. Is the event the first flip is heads and the event the second flip is heads independent?
- If A and B are independent, then P(A|B) = P(A) and P(B|A) = P(B).

Probability of Events Conditional Probability

イロト イヨト イヨト イヨト

- Two events A and B are independent if knowledge that A happened does not affect P(B), or if knowledge that B happened does not effect P(A).
- In the example above, is being female and being a UW-L college student independent?
- Is owning an HDTV and DVR independent?
- Is the event that someone smokes and the event someone has lung cancer independent?
- Suppose a coin is flipped twice. Is the event the first flip is heads and the event the second flip is heads independent?
- If A and B are independent, then P(A|B) = P(A) and P(B|A) = P(B).

Probability of Events Conditional Probability

イロト イヨト イヨト イヨト

- Two events A and B are **independent** if knowledge that A happened does not affect P(B), or if knowledge that B happened does not effect P(A).
- In the example above, is being female and being a UW-L college student independent?
- Is owning an HDTV and DVR independent?
- Is the event that someone smokes and the event someone has lung cancer independent?
- Suppose a coin is flipped twice. Is the event the first flip is heads and the event the second flip is heads independent?
- If A and B are independent, then P(A|B) = P(A) and P(B|A) = P(B).

Probability of Events Conditional Probability

Independence

- Two events A and B are **independent** if knowledge that A happened does not affect P(B), or if knowledge that B happened does not effect P(A).
- In the example above, is being female and being a UW-L college student independent?
- Is owning an HDTV and DVR independent?
- Is the event that someone smokes and the event someone has lung cancer independent?
- Suppose a coin is flipped twice. Is the event the first flip is heads and the event the second flip is heads independent?

• If A and B are independent, then P(A|B) = P(A) and P(B|A) = P(B)

Probability of Events Conditional Probability

イロト イヨト イヨト イヨト

- Two events A and B are **independent** if knowledge that A happened does not affect P(B), or if knowledge that B happened does not effect P(A).
- In the example above, is being female and being a UW-L college student independent?
- Is owning an HDTV and DVR independent?
- Is the event that someone smokes and the event someone has lung cancer independent?
- Suppose a coin is flipped twice. Is the event the first flip is heads and the event the second flip is heads independent?
- If A and B are independent, then P(A|B) = P(A) and P(B|A) = P(B).

Probability of Events Conditional Probability

Bayes Theorem

• This is the coolest thing you'll ever learn a math or stats class:

• Why is the cool? Because this proves that:

 $P(A|B) \neq P(B|A)$

イロン 不同 とくほど 不同と

Probability of Events Conditional Probability

Bayes Theorem

• This is the coolest thing you'll ever learn a math or stats class:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

• Why is the cool? Because this proves that:

 $P(A|B) \neq P(B|A)$

イロン イヨン イヨン イヨン

Probability of Events Conditional Probability

Bayes Theorem

• This is the coolest thing you'll ever learn a math or stats class:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

• Why is the cool? Because this proves that:

 $P(A|B) \neq P(B|A)$

Probability of Events Conditional Probability

• This is the coolest thing you'll ever learn a math or stats class:

$$P(A|B) = rac{P(A \cap B)}{P(B)}$$

• Why is the cool? Because this proves that:

 $P(A|B) \neq P(B|A)$

13/ 28

- Suppose a fatal disease breaks out, and a blood test is used to detect the disease.
- The blood test claims to accurately identify the disease 99% of the time.
- Let A be the event you have a disease.
- Let B be the event the blood test came out positive.

P(B|A) = 0.99

• Suppose you take the blood test and it is positive. What is the probability you have the disease?

P(A|B) = ?

<ロ> (日) (日) (日) (日) (日)

- Suppose a fatal disease breaks out, and a blood test is used to detect the disease.
- The blood test claims to accurately identify the disease 99% of the time.
- Let A be the event you have a disease.
- Let B be the event the blood test came out positive.

P(B|A) = 0.99

• Suppose you take the blood test and it is positive. What is the probability you have the disease?

P(A|B) = ?

13/28

- Suppose a fatal disease breaks out, and a blood test is used to detect the disease.
- The blood test claims to accurately identify the disease 99% of the time.
- Let A be the event you have a disease.
- Let B be the event the blood test came out positive.

P(B|A) = 0.99

• Suppose you take the blood test and it is positive. What is the probability you have the disease?

P(A|B) = ?

13/ 28

- Suppose a fatal disease breaks out, and a blood test is used to detect the disease.
- The blood test claims to accurately identify the disease 99% of the time.
- Let A be the event you have a disease.
- Let B be the event the blood test came out positive.

P(B|A) = 0.99

• Suppose you take the blood test and it is positive. What is the probability you have the disease?

P(A|B) = ?

- Suppose a fatal disease breaks out, and a blood test is used to detect the disease.
- The blood test claims to accurately identify the disease 99% of the time.
- Let A be the event you have a disease.
- Let B be the event the blood test came out positive.

P(B|A) = 0.99

• Suppose you take the blood test and it is positive. What is the probability you have the disease?

P(A|B) = ?

- Suppose a fatal disease breaks out, and a blood test is used to detect the disease.
- The blood test claims to accurately identify the disease 99% of the time.
- Let A be the event you have a disease.
- Let B be the event the blood test came out positive.

P(B|A) = 0.99

• Suppose you take the blood test and it is positive. What is the probability you have the disease?

$$P(A|B) = ?$$

- Suppose a fatal disease breaks out, and a blood test is used to detect the disease.
- The blood test claims to accurately identify the disease 99% of the time.
- Let A be the event you have a disease.
- Let B be the event the blood test came out positive.

$$P(B|A) = 0.99$$

• Suppose you take the blood test and it is positive. What is the probability you have the disease?

$$P(A|B) = ?$$

Probability of Events Conditional Probability

Blood test accuracy

• Suppose 0.2% of people have the disease, and 0.198% have the disease and tested positive.

P(A) = 0.002

 $P(A \cap B) = 0.00198$

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.00198}{0.002} = 0.99$$

Probability of Events Conditional Probability

Blood test accuracy

• Suppose 0.2% of people have the disease, and 0.198% have the disease and tested positive.

P(A) = 0.002

 $P(A \cap B) = 0.00198$

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.00198}{0.002} = 0.99$$

Probability of Events Conditional Probability

Blood test accuracy

• Suppose 0.2% of people have the disease, and 0.198% have the disease and tested positive.

P(A) = 0.002

 $P(A \cap B) = 0.00198$

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.00198}{0.002} = 0.99$$

Probability of Events Conditional Probability

Blood test accuracy

• Suppose 0.2% of people have the disease, and 0.198% have the disease and tested positive.

P(A) = 0.002

 $P(A \cap B) = 0.00198$

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.00198}{0.002} = 0.99$$
Elementary Probability Probability Distributions Combining Random Variables

Probability of Events Conditional Probability

イロト イポト イヨト イヨト

Blood test accuracy

- $\bullet\,$ Suppose 5% of people test positive for the disease.
- What is the probability you have the disease given you tested positive?

$$P(A|B) = \frac{P(A \cap B)}{P(A)} = \frac{0.00198}{0.05} = 0.0396$$

- Even though you tested positive, you still most likely do not have the disease.
- And the test had the claim of being 99% accurate.
- So what is the real accuracy of things like blood tests, pregnancy tests, and lie detector tests?

Blood test accuracy

- $\bullet\,$ Suppose 5% of people test positive for the disease.
- What is the probability you have the disease given you tested positive?

$$P(A|B) = \frac{P(A \cap B)}{P(A)} = \frac{0.00198}{0.05} = 0.0396$$

- Even though you tested positive, you still most likely do not have the disease.
- And the test had the claim of being 99% accurate.
- So what is the real accuracy of things like blood tests, pregnancy tests, and lie detector tests?

- $\bullet\,$ Suppose 5% of people test positive for the disease.
- What is the probability you have the disease given you tested positive?

$$P(A|B) = \frac{P(A \cap B)}{P(A)} = \frac{0.00198}{0.05} = 0.0396$$

- Even though you tested positive, you still most likely do not have the disease.
- And the test had the claim of being 99% accurate.
- So what is the real accuracy of things like blood tests, pregnancy tests, and lie detector tests?

- $\bullet\,$ Suppose 5% of people test positive for the disease.
- What is the probability you have the disease given you tested positive?

$$P(A|B) = \frac{P(A \cap B)}{P(A)} = \frac{0.00198}{0.05} = 0.0396$$

- Even though you tested positive, you still most likely do not have the disease.
- And the test had the claim of being 99% accurate.
- So what is the real accuracy of things like blood tests, pregnancy tests, and lie detector tests?

- $\bullet\,$ Suppose 5% of people test positive for the disease.
- What is the probability you have the disease given you tested positive?

$$P(A|B) = \frac{P(A \cap B)}{P(A)} = \frac{0.00198}{0.05} = 0.0396$$

- Even though you tested positive, you still most likely do not have the disease.
- And the test had the claim of being 99% accurate.
- So what is the real accuracy of things like blood tests, pregnancy tests, and lie detector tests?

イロト イポト イラト イラト

Blood test accuracy

- Suppose 5% of people test positive for the disease.
- What is the probability you have the disease given you tested positive?

$$P(A|B) = \frac{P(A \cap B)}{P(A)} = \frac{0.00198}{0.05} = 0.0396$$

- Even though you tested positive, you still most likely do not have the disease.
- And the test had the claim of being 99% accurate.
- So what is the real accuracy of things like blood tests, pregnancy tests, and lie detector tests?

Elementary Probability Probability Distributions Combining Random Variables

Definitions

<ロ> (日) (日) (日) (日) (日)

- **Random variable**: a variable that has a single numerical value determined by chance.
- Data is a bunch of realizations of a random variable.
- **Discrete random variable**: an RV that can take on "countable" values.
- **Continuous random variable**: a RV that can take on infinitely many values on a continuous scale.

- **Random variable**: a variable that has a single numerical value determined by chance.
- Data is a bunch of realizations of a random variable.
- **Discrete random variable**: an RV that can take on "countable" values.
- **Continuous random variable**: a RV that can take on infinitely many values on a continuous scale.

- **Random variable**: a variable that has a single numerical value determined by chance.
- Data is a bunch of realizations of a random variable.
- **Discrete random variable**: an RV that can take on "countable" values.
- **Continuous random variable**: a RV that can take on infinitely many values on a continuous scale.

イロト イヨト イヨト

- **Random variable**: a variable that has a single numerical value determined by chance.
- Data is a bunch of realizations of a random variable.
- **Discrete random variable**: an RV that can take on "countable" values.
- **Continuous random variable**: a RV that can take on infinitely many values on a continuous scale.

- A **probability distribution** is a graph, table, or formula that gives the probability for each value of a random variable.
- The sum of the probabilities for all possible values an RV can take must equal 1 (or 100%).

$$\sum P(x_i) = 1$$

• Each individual probability must be between zero and one.

 $0 \leq P(x_i) \leq 1$

- A **probability distribution** is a graph, table, or formula that gives the probability for each value of a random variable.
- The sum of the probabilities for all possible values an RV can take must equal 1 (or 100%).

$$\sum P(x_i) = 1$$

• Each individual probability must be between zero and one.

 $0 \leq P(x_i) \leq 1$

- A **probability distribution** is a graph, table, or formula that gives the probability for each value of a random variable.
- The sum of the probabilities for all possible values an RV can take must equal 1 (or 100%).

$$\sum P(x_i) = 1$$

• Each individual probability must be between zero and one.

 $0 \leq P(x_i) \leq 1$

- A **probability distribution** is a graph, table, or formula that gives the probability for each value of a random variable.
- The sum of the probabilities for all possible values an RV can take must equal 1 (or 100%).

$$\sum P(x_i) = 1$$

• Each individual probability must be between zero and one.

$0 \leq P(x_i) \leq 1$

- A **probability distribution** is a graph, table, or formula that gives the probability for each value of a random variable.
- The sum of the probabilities for all possible values an RV can take must equal 1 (or 100%).

$$\sum P(x_i) = 1$$

• Each individual probability must be between zero and one.

$$0 \leq P(x_i) \leq 1$$

イロト イポト イラト イラト

Mean and variance of a probability distribution

18/28

• The mean or **expected value** of a probability distribution is:

$$\mu = \sum x_i P(x_i)$$

• The variance of a probability distribution is given by:

$$\sigma^2 = \sum \left[(x_i - \mu)^2 P(x_i) \right]$$

$$\sigma^2 = \sum \left(x_i^2 P(x_i) \right) - \mu^2$$

18/28

Mean and variance of a probability distribution

• The mean or expected value of a probability distribution is:

$$\mu = \sum x_i P(x_i)$$

• The variance of a probability distribution is given by:

$$\sigma^2 = \sum \left[(x_i - \mu)^2 P(x_i) \right]$$

$$\sigma^2 = \sum \left(x_i^2 P(x_i) \right) - \mu^2$$

18/28

Mean and variance of a probability distribution

• The mean or expected value of a probability distribution is:

$$\mu = \sum x_i P(x_i)$$

• The variance of a probability distribution is given by:

$$\sigma^2 = \sum \left[(x_i - \mu)^2 P(x_i) \right]$$

$$\sigma^2 = \sum \left(x_i^2 P(x_i) \right) - \mu^2$$

18/28

Mean and variance of a probability distribution

• The mean or expected value of a probability distribution is:

$$\mu = \sum x_i P(x_i)$$

• The variance of a probability distribution is given by:

$$\sigma^2 = \sum \left[(x_i - \mu)^2 P(x_i) \right]$$

$$\sigma^2 = \sum \left(x_i^2 P(x_i) \right) - \mu^2$$

Mean and variance of a probability distribution

• The mean or expected value of a probability distribution is:

$$\mu = \sum x_i P(x_i)$$

• The variance of a probability distribution is given by:

$$\sigma^2 = \sum \left[(x_i - \mu)^2 P(x_i) \right]$$

$$\sigma^2 = \sum \left(x_i^2 P(x_i) \right) - \mu^2$$

18/28

- A **Bernoulli trial** results in a random variable that can only result in success (x = 1) or failure (x = 0).
 - Example: an outcome of heads for a single coin flip is a Bernoulli trial.
- A **binomial distribution** is the probability distribution for the number of successes in a fixed number of trials.
- Requirements for a binomial distribution:
 - The experiment must have a fixed number of Bernoulli trials.

(ロ) (部) (E) (E)

- The trials must be independent.
- The probability of success must be the same for each trial.
- Example: what are the possible outcomes for the number of successes in 3 coin flips?

- A **Bernoulli trial** results in a random variable that can only result in success (x = 1) or failure (x = 0).
 - Example: an outcome of heads for a single coin flip is a Bernoulli trial.
- A **binomial distribution** is the probability distribution for the number of successes in a fixed number of trials.
- Requirements for a binomial distribution:
 - The experiment must have a fixed number of Bernoulli trials.

(ロ) (部) (E) (E)

- The trials must be independent.
- The probability of success must be the same for each trial.
- Example: what are the possible outcomes for the number of successes in 3 coin flips?

- A **Bernoulli trial** results in a random variable that can only result in success (x = 1) or failure (x = 0).
 - Example: an outcome of heads for a single coin flip is a Bernoulli trial.
- A **binomial distribution** is the probability distribution for the number of successes in a fixed number of trials.
- Requirements for a binomial distribution:
 - The experiment must have a fixed number of Bernoulli trials.

- The trials must be independent.
- The probability of success must be the same for each trial.
- Example: what are the possible outcomes for the number of successes in 3 coin flips?

- A **Bernoulli trial** results in a random variable that can only result in success (x = 1) or failure (x = 0).
 - Example: an outcome of heads for a single coin flip is a Bernoulli trial.
- A **binomial distribution** is the probability distribution for the number of successes in a fixed number of trials.
- Requirements for a binomial distribution:
 - The experiment must have a fixed number of Bernoulli trials.

(ロ) (部) (E) (E)

- The trials must be independent.
- The probability of success must be the same for each trial.
- Example: what are the possible outcomes for the number of successes in 3 coin flips?

- A **Bernoulli trial** results in a random variable that can only result in success (x = 1) or failure (x = 0).
 - Example: an outcome of heads for a single coin flip is a Bernoulli trial.
- A **binomial distribution** is the probability distribution for the number of successes in a fixed number of trials.
- Requirements for a binomial distribution:
 - The experiment must have a fixed number of Bernoulli trials.

- The trials must be independent.
- The probability of success must be the same for each trial.
- Example: what are the possible outcomes for the number of successes in 3 coin flips?

- A **Bernoulli trial** results in a random variable that can only result in success (x = 1) or failure (x = 0).
 - Example: an outcome of heads for a single coin flip is a Bernoulli trial.
- A **binomial distribution** is the probability distribution for the number of successes in a fixed number of trials.
- Requirements for a binomial distribution:
 - The experiment must have a fixed number of Bernoulli trials.

(ロ) (部) (E) (E)

- The trials must be independent.
- The probability of success must be the same for each trial.
- Example: what are the possible outcomes for the number of successes in 3 coin flips?

- A **Bernoulli trial** results in a random variable that can only result in success (x = 1) or failure (x = 0).
 - Example: an outcome of heads for a single coin flip is a Bernoulli trial.
- A **binomial distribution** is the probability distribution for the number of successes in a fixed number of trials.
- Requirements for a binomial distribution:
 - The experiment must have a fixed number of Bernoulli trials.

<ロ> (日) (日) (日) (日) (日)

- The trials must be independent.
- The probability of success must be the same for each trial.
- Example: what are the possible outcomes for the number of successes in 3 coin flips?

- A **Bernoulli trial** results in a random variable that can only result in success (x = 1) or failure (x = 0).
 - Example: an outcome of heads for a single coin flip is a Bernoulli trial.
- A **binomial distribution** is the probability distribution for the number of successes in a fixed number of trials.
- Requirements for a binomial distribution:
 - The experiment must have a fixed number of Bernoulli trials.

- The trials must be independent.
- The probability of success must be the same for each trial.
- Example: what are the possible outcomes for the number of successes in 3 coin flips?

Random Variables Binomial distribution

イロト イポト イヨト イヨト

Binomial probability distribution

$$P(x) = \frac{n!}{(n-x)!x!} p^{x} (1-p)^{n-x}$$

- n: number of trials.
- P(x): the probability of x number of successes.
- *p* is the probability of success for a single Bernoulli trial.
- Calculate the probability distribution of the 5 coin flip experiment.
- Verify $\sum P(x_i) = 1$.
- Calculate the expected value for the number of heads.
- Calculate the variance and standard deviation.

Binomial probability distribution

$$P(x) = \frac{n!}{(n-x)!x!} p^{x} (1-p)^{n-x}$$

- *n*: number of trials.
- P(x): the probability of x number of successes.
- *p* is the probability of success for a single Bernoulli trial.
- Calculate the probability distribution of the 5 coin flip experiment.
- Verify $\sum P(x_i) = 1$.
- Calculate the expected value for the number of heads.
- Calculate the variance and standard deviation.

Binomial probability distribution

• The binomial probability distribution is given by,

$$P(x) = \frac{n!}{(n-x)!x!} p^{x} (1-p)^{n-x}$$

• n: number of trials.

- P(x): the probability of x number of successes.
- *p* is the probability of success for a single Bernoulli trial.
- Calculate the probability distribution of the 5 coin flip experiment.
- Verify $\sum P(x_i) = 1$.
- Calculate the expected value for the number of heads.
- Calculate the variance and standard deviation.

Binomial probability distribution

$$P(x) = \frac{n!}{(n-x)!x!} p^{x} (1-p)^{n-x}$$

- n: number of trials.
- P(x): the probability of x number of successes.
- *p* is the probability of success for a single Bernoulli trial.
- Calculate the probability distribution of the 5 coin flip experiment.
- Verify $\sum P(x_i) = 1$.
- Calculate the expected value for the number of heads.
- Calculate the variance and standard deviation.

Binomial probability distribution

$$P(x) = \frac{n!}{(n-x)!x!} p^{x} (1-p)^{n-x}$$

- n: number of trials.
- P(x): the probability of x number of successes.
- p is the probability of success for a single Bernoulli trial.
- Calculate the probability distribution of the 5 coin flip experiment.
- Verify $\sum P(x_i) = 1$.
- Calculate the expected value for the number of heads.
- Calculate the variance and standard deviation.

イロト イポト イラト イラト

Binomial probability distribution

$$P(x) = \frac{n!}{(n-x)!x!} p^{x} (1-p)^{n-x}$$

- n: number of trials.
- P(x): the probability of x number of successes.
- p is the probability of success for a single Bernoulli trial.
- Calculate the probability distribution of the 5 coin flip experiment.
- Verify $\sum P(x_i) = 1$.
- Calculate the expected value for the number of heads.
- Calculate the variance and standard deviation.

Binomial probability distribution

$$P(x) = \frac{n!}{(n-x)!x!}p^{x}(1-p)^{n-x}$$

- n: number of trials.
- P(x): the probability of x number of successes.
- p is the probability of success for a single Bernoulli trial.
- Calculate the probability distribution of the 5 coin flip experiment.
- Verify $\sum P(x_i) = 1$.
- Calculate the expected value for the number of heads.
- Calculate the variance and standard deviation.

Image: A matrix

Binomial probability distribution

$$P(x) = \frac{n!}{(n-x)!x!}p^{x}(1-p)^{n-x}$$

- n: number of trials.
- P(x): the probability of x number of successes.
- p is the probability of success for a single Bernoulli trial.
- Calculate the probability distribution of the 5 coin flip experiment.
- Verify $\sum P(x_i) = 1$.
- Calculate the expected value for the number of heads.
- Calculate the variance and standard deviation.
Image: A matrix

Binomial probability distribution

• The binomial probability distribution is given by,

$$P(x) = \frac{n!}{(n-x)!x!} p^{x} (1-p)^{n-x}$$

- n: number of trials.
- P(x): the probability of x number of successes.
- p is the probability of success for a single Bernoulli trial.
- Calculate the probability distribution of the 5 coin flip experiment.
- Verify $\sum P(x_i) = 1$.
- Calculate the expected value for the number of heads.
- Calculate the variance and standard deviation.

Binomial Distribution

• Recall the mean of a probability distribution:

• For the binomial distribution, this gets more simple:

 $\mu = np$

• Recall the variance of a probability distribution:

$$\sigma^2 = \sum \left[(x_i - \mu)^2 P(x_i) \right]$$

• It gets simpler:

$$\sigma^2 = np(1-p)$$

イロン イヨン イヨン イヨン

Binomial Distribution

• Recall the mean of a probability distribution:

$$\mu = \sum x_i P(x_i)$$

• For the binomial distribution, this gets more simple:

 $\mu = np$

• Recall the variance of a probability distribution:

$$\sigma^2 = \sum \left[(x_i - \mu)^2 P(x_i) \right]$$

• It gets simpler:

$$\sigma^2 = np(1-p)$$

イロト イポト イヨト イヨト

Binomial Distribution

• Recall the mean of a probability distribution:

$$\mu = \sum x_i P(x_i)$$

• For the binomial distribution, this gets more simple:

 $\mu = np$

• Recall the variance of a probability distribution:

 $\sigma^2 = \sum \left[(x_i - \mu)^2 P(x_i) \right]$

• It gets simpler:

$$\sigma^2 = np(1-p)$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Binomial Distribution

• Recall the mean of a probability distribution:

$$\mu = \sum x_i P(x_i)$$

• For the binomial distribution, this gets more simple:

 $\mu = np$

• Recall the variance of a probability distribution:

 $\sigma^2 = \sum \left[(x_i - \mu)^2 P(x_i) \right]$

• It gets simpler:

$$\sigma^2 = np(1-p)$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Binomial Distribution

• Recall the mean of a probability distribution:

$$\mu = \sum x_i P(x_i)$$

• For the binomial distribution, this gets more simple:

 $\mu = np$

• Recall the variance of a probability distribution:

$$\sigma^2 = \sum \left[(x_i - \mu)^2 P(x_i) \right]$$

• It gets simpler:

$$\sigma^2 = np(1-p)$$

イロト イポト イヨト イヨト

Binomial Distribution

• Recall the mean of a probability distribution:

$$\mu = \sum x_i P(x_i)$$

• For the binomial distribution, this gets more simple:

$$\mu = np$$

• Recall the variance of a probability distribution:

$$\sigma^2 = \sum \left[(x_i - \mu)^2 P(x_i) \right]$$

• It gets simpler:

$$\sigma^2 = np(1-p)$$

イロト イポト イヨト イヨト

Binomial Distribution

• Recall the mean of a probability distribution:

$$\mu = \sum x_i P(x_i)$$

• For the binomial distribution, this gets more simple:

$$\mu = np$$

• Recall the variance of a probability distribution:

$$\sigma^2 = \sum \left[(x_i - \mu)^2 P(x_i) \right]$$

• It gets simpler:

$$\sigma^2 = np(1-p)$$

A B M
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- - E > - E >

Binomial Distribution

• Recall the mean of a probability distribution:

$$\mu = \sum x_i P(x_i)$$

• For the binomial distribution, this gets more simple:

$$\mu = np$$

• Recall the variance of a probability distribution:

$$\sigma^2 = \sum \left[(x_i - \mu)^2 P(x_i) \right]$$

• It gets simpler:

$$\sigma^2 = np(1-p)$$

A B M
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- - E > - E >

イロト イヨト イヨト イヨト

Normal Approximation to a Binomial

• Motivation: Questions like,

- Suppose a study concluded that Burger King fills out 10% of its orders inaccurately. If a particular franchise makes 30,000 orders a month, what is the probability it will make more than 3,100 errors in orders?
- Compute P(x=3100), P(x=3101), P(x=3102), P(x=3103), ...
 P(x=30,000).
- That's a ridiculous amount of computations.
- Can you suppose that the number of errors is *normally* distributed with mean equal to $\mu = np$, and variance $\sigma^2 = np(1-p)$?

Normal Approximation to a Binomial

22/28

- Motivation: Questions like,
- Suppose a study concluded that Burger King fills out 10% of its orders inaccurately. If a particular franchise makes 30,000 orders a month, what is the probability it will make more than 3,100 errors in orders?
- Compute P(x=3100), P(x=3101), P(x=3102), P(x=3103), ...
 P(x=30,000).
- That's a ridiculous amount of computations.
- Can you suppose that the number of errors is *normally* distributed with mean equal to $\mu = np$, and variance $\sigma^2 = np(1-p)$?

Normal Approximation to a Binomial

22/28

- Motivation: Questions like,
- Suppose a study concluded that Burger King fills out 10% of its orders inaccurately. If a particular franchise makes 30,000 orders a month, what is the probability it will make more than 3,100 errors in orders?
- Compute P(x=3100), P(x=3101), P(x=3102), P(x=3103), ...
 P(x=30,000).
- That's a ridiculous amount of computations.
- Can you suppose that the number of errors is *normally* distributed with mean equal to $\mu = np$, and variance $\sigma^2 = np(1-p)$?

22/28

- Motivation: Questions like,
- Suppose a study concluded that Burger King fills out 10% of its orders inaccurately. If a particular franchise makes 30,000 orders a month, what is the probability it will make more than 3,100 errors in orders?
- Compute P(x=3100), P(x=3101), P(x=3102), P(x=3103), ...
 P(x=30,000).
- That's a ridiculous amount of computations.
- Can you suppose that the number of errors is *normally* distributed with mean equal to $\mu = np$, and variance $\sigma^2 = np(1-p)$?

- Motivation: Questions like,
 - Suppose a study concluded that Burger King fills out 10% of its orders inaccurately. If a particular franchise makes 30,000 orders a month, what is the probability it will make more than 3,100 errors in orders?
- Compute P(x=3100), P(x=3101), P(x=3102), P(x=3103), ...
 P(x=30,000).
- That's a ridiculous amount of computations.
- Can you suppose that the number of errors is *normally* distributed with mean equal to $\mu = np$, and variance $\sigma^2 = np(1-p)$?

23/28

- Can you suppose that the number of errors is normally distributed with mean equal to $\mu = np$, and variance $\sigma^2 = np(1-p)$?
- Well... the number of errors is truly a *binomial distribution*, not a normal distribution.
- And... the number of errors is a *discrete* random variable, but the normal distribution is for continuous random variables.
- But... the normal distribution will be a good approximation if,

np>5 and n(1-p)>5

イロト イポト イヨト イヨト

23/28

Normal Approximation to a Binomial

- Can you suppose that the number of errors is normally distributed with mean equal to $\mu = np$, and variance $\sigma^2 = np(1-p)$?
- Well... the number of errors is truly a *binomial distribution*, not a normal distribution.
- And... the number of errors is a *discrete* random variable, but the normal distribution is for continuous random variables.
- But... the normal distribution will be a good approximation if,

np>5 and n(1-p)>5

・ロト ・回ト ・ヨト

- Can you suppose that the number of errors is *normally* distributed with mean equal to $\mu = np$, and variance $\sigma^2 = np(1-p)$?
- Well... the number of errors is truly a *binomial distribution*, not a normal distribution.
- And... the number of errors is a *discrete* random variable, but the normal distribution is for continuous random variables.
- But... the normal distribution will be a good approximation if,

np > 5 and n(1-p) > 5

イロト イヨト イヨト イヨト

- Can you suppose that the number of errors is *normally* distributed with mean equal to $\mu = np$, and variance $\sigma^2 = np(1-p)$?
- Well... the number of errors is truly a *binomial distribution*, not a normal distribution.
- And... the number of errors is a *discrete* random variable, but the normal distribution is for continuous random variables.
- But... the normal distribution will be a good approximation if,

np>5 and n(1-p)>5

イロト イヨト イヨト イヨト

- Can you suppose that the number of errors is *normally* distributed with mean equal to $\mu = np$, and variance $\sigma^2 = np(1-p)$?
- Well... the number of errors is truly a *binomial distribution*, not a normal distribution.
- And... the number of errors is a *discrete* random variable, but the normal distribution is for continuous random variables.
- But... the normal distribution will be a good approximation if,

np > 5 and n(1-p) > 5

・ロン ・回 と ・ ヨ と ・

Covariance Combining Random Variables Examples

Covariance

- To measure the variance of combinations of RVs, need to know the covariance.
- **Covariance**: related to Pearson correlation coefficient, it's a measure of how two RVs move together.
- Interpretations:
 - When covariance is negative, variables move in opposite directions.
 - When covariance is positive, variables move in same direction.

イロト イヨト イヨト イヨト

Covariance

Covariance Combining Random Variables Examples

24/28

- To measure the variance of combinations of RVs, need to know the covariance.
- **Covariance**: related to Pearson correlation coefficient, it's a measure of how two RVs move together.
- Interpretations:
 - When covariance is negative, variables move in opposite directions.
 - When covariance is positive, variables move in same direction.

イロト イヨト イヨト イヨト

Covariance

Covariance Combining Random Variables Examples

24/28

- To measure the variance of combinations of RVs, need to know the covariance.
- **Covariance**: related to Pearson correlation coefficient, it's a measure of how two RVs move together.
- Interpretations:
 - When covariance is negative, variables move in opposite directions.
 - When covariance is positive, variables move in same direction.

イロト イヨト イヨト

Covariance Combining Random Variables Examples

Covariance

- To measure the variance of combinations of RVs, need to know the covariance.
- **Covariance**: related to Pearson correlation coefficient, it's a measure of how two RVs move together.
- Interpretations:
 - When covariance is negative, variables move in opposite directions.
 - When covariance is positive, variables move in same direction.

Covariance Combining Random Variables Examples

Covariance

- To measure the variance of combinations of RVs, need to know the covariance.
- **Covariance**: related to Pearson correlation coefficient, it's a measure of how two RVs move together.
- Interpretations:
 - When covariance is negative, variables move in opposite directions.
 - When covariance is positive, variables move in same direction.

Covariance Combining Random Variables Examples

(ロ) (部) (E) (E)

Combining Random Variables

25/28

- Suppose two RVs are measured in the same units, can they be combined (added, subtracted, etc)?
- Who would want to do such a thing?
- Addition rule:
 - If Z = X + Y, then E(Z) = E(X) + E(Y).
 - More generally, if Z = aX + bY, ther
 E(Z) = aE(X) + bE(Y).

Covariance Combining Random Variables Examples

イロト イヨト イヨト イヨト

Combining Random Variables

25/28

- Suppose two RVs are measured in the same units, can they be combined (added, subtracted, etc)?
- Who would want to do such a thing?
- Addition rule:

 If Z = X + Y, then E(Z) = E(X) + E(Y)
 More generally, if Z = aX + bY, then E(Z) = aE(X) + bE(Y).

Covariance Combining Random Variables Examples

イロト イヨト イヨト イヨト

Combining Random Variables

25/28

- Suppose two RVs are measured in the same units, can they be combined (added, subtracted, etc)?
- Who would want to do such a thing?
- Addition rule:

• If
$$Z = X + Y$$
, then $E(Z) = E(X) + E(Y)$.

• More generally, if Z = aX + bY, then E(Z) = aE(X) + bE(Y).

Covariance Combining Random Variables Examples

イロト イヨト イヨト イヨト

Combining Random Variables

25/28

- Suppose two RVs are measured in the same units, can they be combined (added, subtracted, etc)?
- Who would want to do such a thing?
- Addition rule:
 - If Z = X + Y, then E(Z) = E(X) + E(Y).

• More generally, if Z = aX + bY, then E(Z) = aE(X) + bE(Y).

Covariance Combining Random Variables Examples

イロト イポト イヨト イヨト

Combining Random Variables

- Suppose two RVs are measured in the same units, can they be combined (added, subtracted, etc)?
- Who would want to do such a thing?
- Addition rule:
 - If Z = X + Y, then E(Z) = E(X) + E(Y).
 - More generally, if Z = aX + bY, then E(Z) = aE(X) + bE(Y).

Covariance Combining Random Variables Examples

・ロン ・回 と ・ ヨ と ・ ヨ と

Variance of Combinations

26/28

• Suppose Z = X + Y:

$$VAR(X+Y) \equiv \sigma_z^2 = \sigma_x^2 + \sigma_y^2 + 2\sigma_{xy}$$

• Suppose Z = aX + bY:

 $VAR(aX + bY) \equiv \sigma_z^2 = a^2 \sigma_x^2 + b^2 \sigma_y^2 + 2ab\sigma_{xy}.$

Covariance Combining Random Variables Examples

・ロン ・回 と ・ ヨ と ・ ヨ と

Variance of Combinations

26/28

• Suppose Z = X + Y:

$$VAR(X + Y) \equiv \sigma_z^2 = \sigma_x^2 + \sigma_y^2 + 2\sigma_{xy}$$

• Suppose Z = aX + bY:

 $VAR(aX + bY) \equiv \sigma_z^2 = a^2 \sigma_x^2 + b^2 \sigma_y^2 + 2ab\sigma_{xy}.$

Covariance Combining Random Variables Examples

イロン 不同 とくほど 不同と

æ

Variance of Combinations

26/28

• Suppose Z = X + Y:

$$VAR(X+Y) \equiv \sigma_z^2 = \sigma_x^2 + \sigma_y^2 + 2\sigma_{xy}$$

• Suppose
$$Z = aX + bY$$
:

$$VAR(aX + bY) \equiv \sigma_z^2 = a^2 \sigma_x^2 + b^2 \sigma_y^2 + 2ab\sigma_{xy}.$$

Covariance Combining Random Variables Examples

イロン 不同 とくほど 不同と

æ

Variance of Combinations

26/28

• Suppose Z = X + Y:

$$VAR(X+Y) \equiv \sigma_z^2 = \sigma_x^2 + \sigma_y^2 + 2\sigma_{xy}$$

• Suppose
$$Z = aX + bY$$
:

$$VAR(aX + bY) \equiv \sigma_z^2 = a^2 \sigma_x^2 + b^2 \sigma_y^2 + 2ab\sigma_{xy}.$$

Covariance Combining Random Variables Examples

Portfolio Risk

27/28

- Don't put all your eggs in one basket.
- Would it make more sense to put your money in two investments that are negatively correlated (meaning they have a negative covariance)?
- Example, suppose the variance for the quarterly return is equal to 15% for Investment X and 10% for Investment Y, and the covariance is equal to -8%. Suppose you invested have your money in each investment.
- Would it make more sense to put your money in two investments that are positively correlated (meaning they have a positive covariance)?
- Example, suppose the variance for the quarterly return is equal to 18% for Investment X and 12% for Investment Y, and the covariance is equal to 6%. Suppose you invested have your money in each investment.

Covariance Combining Random Variables Examples

Portfolio Risk

- Don't put all your eggs in one basket.
- Would it make more sense to put your money in two investments that are negatively correlated (meaning they have a negative covariance)?
- Example, suppose the variance for the quarterly return is equal to 15% for Investment X and 10% for Investment Y, and the covariance is equal to -8%. Suppose you invested have your money in each investment.
- Would it make more sense to put your money in two investments that are positively correlated (meaning they have a positive covariance)?
- Example, suppose the variance for the quarterly return is equal to 18% for Investment X and 12% for Investment Y, and the covariance is equal to 6%. Suppose you invested have your money in each investment.

Covariance Combining Random Variables Examples

Portfolio Risk

27/28

- Don't put all your eggs in one basket.
- Would it make more sense to put your money in two investments that are negatively correlated (meaning they have a negative covariance)?
- Example, suppose the variance for the quarterly return is equal to 15% for Investment X and 10% for Investment Y, and the covariance is equal to -8%. Suppose you invested have your money in each investment.
- Would it make more sense to put your money in two investments that are positively correlated (meaning they have a positive covariance)?
- Example, suppose the variance for the quarterly return is equal to 18% for Investment X and 12% for Investment Y, and the covariance is equal to 6%. Suppose you invested have your money in each investment.
Covariance Combining Random Variables Examples

Portfolio Risk

- Don't put all your eggs in one basket.
- Would it make more sense to put your money in two investments that are negatively correlated (meaning they have a negative covariance)?
- Example, suppose the variance for the quarterly return is equal to 15% for Investment X and 10% for Investment Y, and the covariance is equal to -8%. Suppose you invested have your money in each investment.
- Would it make more sense to put your money in two investments that are positively correlated (meaning they have a positive covariance)?
- Example, suppose the variance for the quarterly return is equal to 18% for Investment X and 12% for Investment Y, and the covariance is equal to 6%. Suppose you invested have your money in each investment.

Covariance Combining Random Variables Examples

Portfolio Risk

- Don't put all your eggs in one basket.
- Would it make more sense to put your money in two investments that are negatively correlated (meaning they have a negative covariance)?
- Example, suppose the variance for the quarterly return is equal to 15% for Investment X and 10% for Investment Y, and the covariance is equal to -8%. Suppose you invested have your money in each investment.
- Would it make more sense to put your money in two investments that are positively correlated (meaning they have a positive covariance)?
- Example, suppose the variance for the quarterly return is equal to 18% for Investment X and 12% for Investment Y, and the covariance is equal to 6%. Suppose you invested have your money in each investment.

Covariance Combining Random Variables Examples

<ロ> (日) (日) (日) (日) (日)

Another Example

- Suppose you run a website business that produces and sells custom made furniture.
 - When someone submits an order online you must first build the furniture. The average time it takes to build the furniture is 9 business days and the standard deviation is 2.5 business days.
 - After you build the furniture, you must ship it. The average shipping time is 4 business days and the standard deviation is 3 business days.
 - What is the average elapsed time from the time the order is placed until the delivery?
 - What is the variance and standard deviation of the elapsed time from the time the order is placed until the delivery?

Covariance Combining Random Variables Examples

<ロ> (日) (日) (日) (日) (日)

Another Example

- Suppose you run a website business that produces and sells custom made furniture.
 - When someone submits an order online you must first build the furniture. The average time it takes to build the furniture is 9 business days and the standard deviation is 2.5 business days.
 - After you build the furniture, you must ship it. The average shipping time is 4 business days and the standard deviation is 3 business days.
 - What is the average elapsed time from the time the order is placed until the delivery?
 - What is the variance and standard deviation of the elapsed time from the time the order is placed until the delivery?

Covariance Combining Random Variables Examples

<ロ> (日) (日) (日) (日) (日)

Another Example

- Suppose you run a website business that produces and sells custom made furniture.
 - When someone submits an order online you must first build the furniture. The average time it takes to build the furniture is 9 business days and the standard deviation is 2.5 business days.
 - After you build the furniture, you must ship it. The average shipping time is 4 business days and the standard deviation is 3 business days.
 - What is the average elapsed time from the time the order is placed until the delivery?
 - What is the variance and standard deviation of the elapsed time from the time the order is placed until the delivery?

Covariance Combining Random Variables Examples

イロト イポト イヨト

Another Example

- Suppose you run a website business that produces and sells custom made furniture.
 - When someone submits an order online you must first build the furniture. The average time it takes to build the furniture is 9 business days and the standard deviation is 2.5 business days.
 - After you build the furniture, you must ship it. The average shipping time is 4 business days and the standard deviation is 3 business days.
 - What is the average elapsed time from the time the order is placed until the delivery?
 - What is the variance and standard deviation of the elapsed time from the time the order is placed until the delivery?

Covariance Combining Random Variables Examples

イロト イポト イラト イラト

Another Example

- Suppose you run a website business that produces and sells custom made furniture.
 - When someone submits an order online you must first build the furniture. The average time it takes to build the furniture is 9 business days and the standard deviation is 2.5 business days.
 - After you build the furniture, you must ship it. The average shipping time is 4 business days and the standard deviation is 3 business days.
 - What is the average elapsed time from the time the order is placed until the delivery?
 - What is the variance and standard deviation of the elapsed time from the time the order is placed until the delivery?