Decision Making

BUS 735: Business Decision Making and Research

Goals and Agenda

Learning Objective	Active Learning Activity
Learn how to simulate probabil-	Example problem in Excel.
ity distribution	
Learn how to simulate inven-	Example problem in Excel.
tory systems.	
Learn how to simulate queuing	Example problem in Excel
systems.	
More practice.	Read Chapter 14, Homework
	exercises.

Simulating Probability Distributions

- Simulation: drawing random numbers from a probability distribution.
- Monte Carlo Simulation: Use simulated data to simply compute means, standard deviations, etc.
- More complicated computations can be made based on the simulated data.
 - Create linear combinations of variables.
 - Take ratios!

Example

- Suppose the MacGuys sell somewhere between 0 and 4 computers each week from their store, according to the probability distribution to the right.
- Computers sell for \$4,300 each.
- Analytically compute the mean and standard deviation for weekly demand for computers.
- Analytically compute the mean and standard deviation for weekly revenue.
- Simulate data for a number of weeks, and compute these same statistics.

ProbabilityDistribution:

Demand	Prob.
0	0.2
1	0.4
2	0.2
3	0.1
4	0.1

Something More Complicated

- Suppose there is an inventory cost of \$50 per computer.
- If the company falls short, the company not only fails to make a sale, but is estimated to loose \$500 in future revenue per computer, due to making a customer unhappy.
- Suppose the company orders 1 computer per week.
- Simulate demand for two years (104 weeks), simulate inventory for each week:

Inventory_t = max(Inventory_{t-1} - Demand_{t-1}, 0) + 1.

• Simulate revenue, adjusting for \$50 inventory cost, \$500 shortage cost.

 $\operatorname{Revenue}_{t} = (\$4, 300) \min(\operatorname{Inventory}_{t}, \operatorname{Demand}_{t})$

-(\$50) Inventory_t -(\$500) max(Demand_t - Inventory_t, 0)

Queuing System Example

- A denim manufacturing facility receives yarn at varying time intervals (according to the probability distribution in the following slide).
- Then it dyes the yarn, which takes varying amounts of time according to the second probability distibution (according to the second probability distribution on the following slide).
- If a batch of yarn arrives at the facility, it is possible it must wait for the previous batch to complete.
- It is possible that facility sits not utilized while it waits for another batch of yarn to arrive.
- Calculate the mean and std dev for the total time in the facility (waiting time + dying time).
- Calculate the mean and std dev for the waiting time.
- Calculate the average number of days per month the facility is idle.

Queuing System Probability Distributions

	Arrival Interval	Probability
	1 day	0.2
Distribution of Arrival Intervals:	$2 \mathrm{days}$	0.4
	3 days	0.3
	4 days	0.1

Distribution of Dying Times:	Dying Time	Probability
	$0.5 \mathrm{days}$	0.2
	$1 \mathrm{day}$	0.5
	$2 \mathrm{days}$	0.3

Queuing System Equations

Compute the following:

- 1. Simulate $Interval_i$.
- 2. Arrival_i = Arrival_{i-1} + Interval_i.
- 3. Waiting_i = $max(Finish_{i-1} Arrival_i, 0)$
- 4. $Idle_i = max(Arrival_i Finish_{i-1}, 0)$
- 5. Simulate $Dying_i$.
- 6. $\text{TimeSystem}_i = \text{Waiting}_i + \text{Dying}_i$
- 7. $Finish_i = Arrival_i + TimeSystem_i$

Homework

- End of Chapter 14 (pages 665-666), problems 7 and 8.
- Due Tuesday, November 6, before class.
- Type up answers in a Microsoft Word file, include your Excel file.
- Upload to D2L dropbox.