BUS 735: Business Decision Making and Research

• Specific Goals:

- Learn how to formulate models involving transporting goods from suppliers to destinations.
- Learn how to use the transportation model framework for finding optimal assignments.
- Continue to perfect our linear programming / Excel skills

Learning Objectives:

- Be able to construct and solve linear programming models to answer business optimization problems.
- Be able to use standard computer packages such as SPSS and Excel to conduct the quantitative analyses described in the learning objectives above.

- Specific Goals:
 - Learn how to formulate models involving transporting goods from suppliers to destinations.
 - Learn how to use the transportation model framework for finding optimal assignments.
 - Continue to perfect our linear programming / Excel skills!
- Learning Objectives:
 - Be able to construct and solve linear programming models to answer business optimization problems.
 - Be able to use standard computer packages such as SPSS and Excel to conduct the quantitative analyses described in the learning objectives above.

Specific Goals:

- Learn how to formulate models involving transporting goods from suppliers to destinations.
- Learn how to use the transportation model framework for finding optimal assignments.
- Continue to perfect our linear programming / Excel skills!

Learning Objectives:

- Be able to construct and solve linear programming models to answer business optimization problems.
- Be able to use standard computer packages such as SPSS and Excel to conduct the quantitative analyses described in the learning objectives above.

Specific Goals:

- Learn how to formulate models involving transporting goods from suppliers to destinations.
- Learn how to use the transportation model framework for finding optimal assignments.
- Continue to perfect our linear programming / Excel skills!

Learning Objectives:

- Be able to construct and solve linear programming models to answer business optimization problems.
- Be able to use standard computer packages such as SPSS and Excel to conduct the quantitative analyses described in the learning objectives above.

- Transportation Models: class of problems involving transporting goods from suppliers to destinations, usually at minimum cost.
- Assumptions:
 - Each source has a fixed supply (not essential).
 - Each destination has a fixed demand (not essential)
- The cost of transporting goods differs between points
- Meeting demand at each location typically requires supply from multiple sources.

- Transportation Models: class of problems involving transporting goods from suppliers to destinations, usually at minimum cost.
- Assumptions:
 - Each source has a fixed supply (not essential).
 - Each destination has a fixed demand (not essential)
- The cost of transporting goods differs between points
- Meeting demand at each location typically requires supply from multiple sources.

- Transportation Models: class of problems involving transporting goods from suppliers to destinations, usually at minimum cost.
- Assumptions:
 - Each source has a fixed supply (not essential).
 - Each destination has a fixed demand (not essential)
- The cost of transporting goods differs between points
- Meeting demand at each location typically requires supply from multiple sources.

- Transportation Models: class of problems involving transporting goods from suppliers to destinations, usually at minimum cost.
- Assumptions:
 - Each source has a fixed supply (not essential).
 - Each destination has a fixed demand (not essential).
- The cost of transporting goods differs between points
- Meeting demand at each location typically requires supply from multiple sources.

- Transportation Models: class of problems involving transporting goods from suppliers to destinations, usually at minimum cost.
- Assumptions:
 - Each source has a fixed supply (not essential).
 - Each destination has a fixed demand (not essential).
- The cost of transporting goods differs between points.
- Meeting demand at each location typically requires supply from multiple sources.

- Transportation Models: class of problems involving transporting goods from suppliers to destinations, usually at minimum cost.
- Assumptions:
 - Each source has a fixed supply (not essential).
 - Each destination has a fixed demand (not essential).
- The cost of transporting goods differs between points.
- Meeting demand at each location typically requires supply from multiple sources.

- We have three different grain elevators scattered around the Great Plains that can supply grain:
 - Kansas City supplies 150 tons of grain.
 - ② Omaha supplies 175 tons of grain.
 - ① Des Moines supplies 275 tons of grain.
- We have three different grain mills that need grain:
 - Chicago needs 200 tons of grain
 - St. Louis needs 100 tons of grain
 - Cincinnati needs 300 tons of grain

- We have three different grain elevators scattered around the Great Plains that can supply grain:
 - Kansas City supplies 150 tons of grain.
 - 2 Omaha supplies 175 tons of grain.
 - Oes Moines supplies 275 tons of grain.
- We have three different grain mills that need grain:
 - Chicago needs 200 tons of grain
 - St. Louis needs 100 tons of grain
 - Cincinnati needs 300 tons of grain

- We have three different grain elevators scattered around the Great Plains that can supply grain:
 - Kansas City supplies 150 tons of grain.
 - ② Omaha supplies 175 tons of grain.
 - Oes Moines supplies 275 tons of grain.
- We have three different grain mills that need grain:
 - Chicago needs 200 tons of grain
 - St. Louis needs 100 tons of grain
 - Cincinnati needs 300 tons of grain

- We have three different grain elevators scattered around the Great Plains that can supply grain:
 - Mansas City supplies 150 tons of grain.
 - ② Omaha supplies 175 tons of grain.
 - Obes Moines supplies 275 tons of grain.
- We have three different grain mills that need grain:
 - Chicago needs 200 tons of grain
 - St. Louis needs 100 tons of grain
 - Cincinnati needs 300 tons of grain

- We have three different grain elevators scattered around the Great Plains that can supply grain:
 - Kansas City supplies 150 tons of grain.
 - Omaha supplies 175 tons of grain.
 - Oes Moines supplies 275 tons of grain.
- We have three different grain mills that need grain:
 - Chicago needs 200 tons of grain
 - ② St. Louis needs 100 tons of grain.
 - Cincinnati needs 300 tons of grain.

- We have three different grain elevators scattered around the Great Plains that can supply grain:
 - Mansas City supplies 150 tons of grain.
 - Omaha supplies 175 tons of grain.
 - Obes Moines supplies 275 tons of grain.
- We have three different grain mills that need grain:
 - 1 Chicago needs 200 tons of grain.
 - St. Louis needs 100 tons of grain.
 - Cincinnati needs 300 tons of grain.

- We have three different grain elevators scattered around the Great Plains that can supply grain:
 - Mansas City supplies 150 tons of grain.
 - 2 Omaha supplies 175 tons of grain.
 - Obes Moines supplies 275 tons of grain.
- We have three different grain mills that need grain:
 - Chicago needs 200 tons of grain.
 - ② St. Louis needs 100 tons of grain.
 - Cincinnati needs 300 tons of grain

- We have three different grain elevators scattered around the Great Plains that can supply grain:
 - Mansas City supplies 150 tons of grain.
 - Omaha supplies 175 tons of grain.
 - Obes Moines supplies 275 tons of grain.
- We have three different grain mills that need grain:
 - Chicago needs 200 tons of grain.
 - 2 St. Louis needs 100 tons of grain.
 - Cincinnati needs 300 tons of grain.

Transportation Costs

Differing distances between locations, and different gasoline prices along the routes, lead to different costs for transportation.

	Destination Cities			
Source Cities	(A) Chicago	(B) St. Louis	(C) Cincinnati	
(1) Kansas City	\$6	\$8	\$10	
(2) Omaha	\$7	\$11	\$11	
(3) Des Moines	\$4	\$5	\$12	

Transportation Costs

Differing distances between locations, and different gasoline prices along the routes, lead to different costs for transportation.

	Destination Cities		
Source Cities	(A) Chicago	(B) St. Louis	(C) Cincinnati
(1) Kansas City	\$6	\$8	\$10
(2) Omaha	\$7	\$11	\$11
(3) Des Moines	\$4	\$5	\$12

- We want to know how much grain we should send from each grain elevator to each grain mill.
- What is our objective?
- What are our choice variables? How many are there?
- Notation: let x_{1A} denote the amount of grain coming from source 1 (Kansas City) to destination A (Chicago).

- We want to know how much grain we should send from each grain elevator to each grain mill.
- What is our objective?
- What are our choice variables? How many are there?
- Notation: let x_{1A} denote the amount of grain coming from source 1 (Kansas City) to destination A (Chicago).

- We want to know how much grain we should send from each grain elevator to each grain mill.
- What is our objective?
- What are our choice variables? How many are there?
- Notation: let x_{1A} denote the amount of grain coming from source 1 (Kansas City) to destination A (Chicago).

- We want to know how much grain we should send from each grain elevator to each grain mill.
- What is our objective?
- What are our choice variables? How many are there?
- Notation: let x_{1A} denote the amount of grain coming from source 1 (Kansas City) to destination A (Chicago).

- A balanced transportation model is one where total demand is equal to total supply.
 - All supplies will be used \rightarrow supply constraints have =
 - ullet All demands are satisfied o demand constraints have =
- If demand exceeds supply (unbalanced transportation model):
 - All supplies will be used \rightarrow supply constraints have =
 - Not all demands can be satisfied o demand constraints have <
- If supply exceeds demand (unbalanced transportation model):
 - Not all supplies will be used \rightarrow supply constraints have \leq .
 - \bullet All demands can be satisfied \rightarrow demand constraints have =

- A balanced transportation model is one where total demand is equal to total supply.
 - All supplies will be used \rightarrow supply constraints have =.
 - ullet All demands are satisfied o demand constraints have =
- If demand exceeds supply (unbalanced transportation model):
 - All supplies will be used \rightarrow supply constraints have =
 - ullet Not all demands can be satisfied o demand constraints have
- If supply exceeds demand (unbalanced transportation model):
 - Not all supplies will be used \rightarrow supply constraints have \leq .
 - All demands can be satisfied \rightarrow demand constraints have =.

- A balanced transportation model is one where total demand is equal to total supply.
 - All supplies will be used \rightarrow supply constraints have =.
 - ullet All demands are satisfied o demand constraints have =.
- If demand exceeds supply (unbalanced transportation model):
 - All supplies will be used \rightarrow supply constraints have =
 - ullet Not all demands can be satisfied o demand constraints have <
- If supply exceeds demand (unbalanced transportation model):
 - Not all supplies will be used \rightarrow supply constraints have \leq .
 - ullet All demands can be satisfied o demand constraints have =.

- A balanced transportation model is one where total demand is equal to total supply.
 - All supplies will be used \rightarrow supply constraints have =.
 - All demands are satisfied \rightarrow demand constraints have =.
- If demand exceeds supply (unbalanced transportation model):
 - All supplies will be used \rightarrow supply constraints have =
 - Not all demands can be satisfied \rightarrow demand constraints have <.
- If supply exceeds demand (unbalanced transportation model):
 - Not all supplies will be used \rightarrow supply constraints have \leq
 - ullet All demands can be satisfied o demand constraints have =.

- A balanced transportation model is one where total demand is equal to total supply.
 - All supplies will be used \rightarrow supply constraints have =.
 - ullet All demands are satisfied o demand constraints have =.
- If demand exceeds supply (unbalanced transportation model):
 - All supplies will be used \rightarrow supply constraints have =.
 - Not all demands can be satisfied o demand constraints have <.
- If supply exceeds demand (unbalanced transportation model):
 - Not all supplies will be used \rightarrow supply constraints have <
 - \bullet All demands can be satisfied \rightarrow demand constraints have =.

- A balanced transportation model is one where total demand is equal to total supply.
 - All supplies will be used \rightarrow supply constraints have =.
 - All demands are satisfied \rightarrow demand constraints have =.
- If demand exceeds supply (unbalanced transportation model):
 - All supplies will be used \rightarrow supply constraints have =.
 - Not all demands can be satisfied \rightarrow demand constraints have <.
- If supply exceeds demand (unbalanced transportation model):
 - Not all supplies will be used \rightarrow supply constraints have <
 - \bullet All demands can be satisfied \rightarrow demand constraints have =.

- A balanced transportation model is one where total demand is equal to total supply.
 - All supplies will be used \rightarrow supply constraints have =.
 - ullet All demands are satisfied o demand constraints have =.
- If demand exceeds supply (unbalanced transportation model):
 - All supplies will be used \rightarrow supply constraints have =.
 - Not all demands can be satisfied \rightarrow demand constraints have <.
- If supply exceeds demand (unbalanced transportation model):
 - Not all supplies will be used \rightarrow supply constraints have \leq .
 - All demands can be satisfied \rightarrow demand constraints have =

- A balanced transportation model is one where total demand is equal to total supply.
 - All supplies will be used \rightarrow supply constraints have =.
 - All demands are satisfied \rightarrow demand constraints have =.
- If demand exceeds supply (unbalanced transportation model):
 - All supplies will be used \rightarrow supply constraints have =.
 - Not all demands can be satisfied \rightarrow demand constraints have <.
- If supply exceeds demand (unbalanced transportation model):
 - Not all supplies will be used \rightarrow supply constraints have \leq .
 - All demands can be satisfied \rightarrow demand constraints have =

- A balanced transportation model is one where total demand is equal to total supply.
 - All supplies will be used \rightarrow supply constraints have =.
 - All demands are satisfied \rightarrow demand constraints have =.
- If demand exceeds supply (unbalanced transportation model):
 - All supplies will be used \rightarrow supply constraints have =.
 - Not all demands can be satisfied \rightarrow demand constraints have <.
- If supply exceeds demand (unbalanced transportation model):
 - Not all supplies will be used \rightarrow supply constraints have \leq .
 - All demands can be satisfied \rightarrow demand constraints have =.

- Assignment models are like transportation models, except you decide whether or to assign a source to a destination (or employee to a task).
- Decision variables are binary.
- Suppose you have 3 employees and 3 tasks. How many different possible assignments are there?
- Constraints:
 - Each assignment must get at most 1 assignee.
 - Each assignee must get at most 1 assignment.
 - Non-negativity constraints
 - Integer constraints (use Integer Programming).

- Assignment models are like transportation models, except you decide whether or to assign a source to a destination (or employee to a task).
- Decision variables are binary.
- Suppose you have 3 employees and 3 tasks. How many different possible assignments are there?
- Constraints
 - Each assignment must get at most 1 assignee.
 - Each assignee must get at most 1 assignment.
 - Non-negativity constraints.
 - Integer constraints (use Integer Programming).

- Assignment models are like transportation models, except you decide whether or to assign a source to a destination (or employee to a task).
- Decision variables are binary.
- Suppose you have 3 employees and 3 tasks. How many different possible assignments are there?
- Constraints:
 - Each assignment must get at most 1 assignee.
 - Each assignee must get at most 1 assignment
 - Non-negativity constraints.
 - Integer constraints (use Integer Programming).

- Assignment models are like transportation models, except you decide whether or to assign a source to a destination (or employee to a task).
- Decision variables are binary.
- Suppose you have 3 employees and 3 tasks. How many different possible assignments are there?
- Constraints
 - Each assignment must get at most 1 assignee.
 - Each assignee must get at most 1 assignment.
 - Non-negativity constraints.
 - Integer constraints (use Integer Programming).

• Transportation models: Pages 251-252, problems 15, 16, and 17.