Overview of Statistical Methods / ANOVA

BUS 735: Business Decision Making and Research

Specific goals:

- Re-familiarize ourselves with statistical tests.
- Learn how to choose appropriate tests.
- Learn how to compare means or medians among more than two populations.
- Learning objectives:
 - LO1: Be able to construct and test hypotheses using a variety of bivariate statistical methods to compare characteristics between two populations.
 - LO3: Be able to construct and use analysis of variance and analysis of covariance models to construct and test hypotheses considering complex relationships among multiple variables.
 - LO6: Be able to use standard computer packages such as SPSS and Excel to conduct the quantitative analyses described in the learning objectives above.

Specific goals:

- Re-familiarize ourselves with statistical tests.
- Learn how to choose appropriate tests.
- Learn how to compare means or medians among more than two populations.

Learning objectives:

- LO1: Be able to construct and test hypotheses using a variety of bivariate statistical methods to compare characteristics between two populations.
- LO3: Be able to construct and use analysis of variance and analysis of covariance models to construct and test hypotheses considering complex relationships among multiple variables.
- LO6: Be able to use standard computer packages such as SPSS and Excel to conduct the quantitative analyses described in the learning objectives above.

- Parametric Methods:
 - Only for interval or ratio data.
 - Make sure assumptions of CLT hold:
 - Large sample size or.
 - Normal distributed population.
- Non-parametric methods using ranks
 - Ordinal data and/or.
 - Central limit theorem does not apply
- Non-parametric Chi-squared test
 - Can be used for categorical data

- Parametric Methods:
 - Only for interval or ratio data.
 - Make sure assumptions of CLT hold:
 - Large sample size or.
 - Normal distributed population.
- Non-parametric methods using ranks
 - Ordinal data and/or.
 - Central limit theorem does not apply.
- Non-parametric Chi-squared test
 - Can be used for categorical data

- Parametric Methods:
 - Only for interval or ratio data.
 - Make sure assumptions of CLT hold:
 - Large sample size or..
 - Normal distributed population.
- Non-parametric methods using ranks
 - Ordinal data and/or.
 - Central limit theorem does not apply
- Non-parametric Chi-squared test
 - Can be used for categorical data

- Parametric Methods:
 - Only for interval or ratio data.
 - Make sure assumptions of CLT hold:
 - Large sample size or..
 - Normal distributed population.
- Non-parametric methods using ranks
 - Ordinal data and/or.
 - Central limit theorem does not apply.
- Non-parametric Chi-squared test
 - Can be used for categorical data

- Parametric Methods:
 - Only for interval or ratio data.
 - Make sure assumptions of CLT hold:
 - Large sample size or..
 - Normal distributed population.
- Non-parametric methods using ranks
 - Ordinal data and/or.
 - Central limit theorem does not apply
- Non-parametric Chi-squared test
 - Can be used for categorical data.

- Parametric Methods:
 - Only for interval or ratio data.
 - Make sure assumptions of CLT hold:
 - Large sample size or..
 - Normal distributed population.
- Non-parametric methods using ranks
 - Ordinal data and/or...
 - Central limit theorem does not apply.
- Non-parametric Chi-squared test
 - Can be used for categorical data

- Parametric Methods:
 - Only for interval or ratio data.
 - Make sure assumptions of CLT hold:
 - Large sample size or..
 - Normal distributed population.
- Non-parametric methods using ranks
 - Ordinal data and/or...
 - Central limit theorem does not apply.
- Non-parametric Chi-squared test
 - Can be used for categorical data.

- Parametric Methods:
 - Only for interval or ratio data.
 - Make sure assumptions of CLT hold:
 - Large sample size or..
 - Normal distributed population.
- Non-parametric methods using ranks
 - Ordinal data and/or...
 - Central limit theorem does not apply.
- Non-parametric Chi-squared test
 - Can be used for categorical data

- Parametric Methods:
 - Only for interval or ratio data.
 - Make sure assumptions of CLT hold:
 - Large sample size or..
 - Normal distributed population.
- Non-parametric methods using ranks
 - Ordinal data and/or...
 - Central limit theorem does not apply.
- Non-parametric Chi-squared test
 - Can be used for categorical data

- Parametric Methods:
 - Only for interval or ratio data.
 - Make sure assumptions of CLT hold:
 - Large sample size or..
 - Normal distributed population.
- Non-parametric methods using ranks
 - Ordinal data and/or...
 - Central limit theorem does not apply.
- Non-parametric Chi-squared test
 - Can be used for categorical data.

Examine a proportion

- Parametric: treat data as 0s and 1s, T-test for a single mean.
- Nonparametric: Binomial distribution.
- Examine the "average" (measure of center) of a single population.
 - Parametric method: T-test for a single mean
 - Nonparametric methods: Test proportion of data at or below hypothesized median less than 50%.

- Examine a proportion
 - Parametric: treat data as 0s and 1s, T-test for a single mean.
 - Nonparametric: Binomial distribution
- Examine the "average" (measure of center) of a single population.
 - Parametric method: T-test for a single mean
 - Nonparametric methods: Test proportion of data at or below hypothesized median less than 50%.

- Examine a proportion
 - Parametric: treat data as 0s and 1s, T-test for a single mean.
 - Nonparametric: Binomial distribution.
- Examine the "average" (measure of center) of a single population.
 - Parametric method: T-test for a single mean
 - Nonparametric methods: Test proportion of data at or below hypothesized median less than 50%.

- Examine a proportion
 - Parametric: treat data as 0s and 1s, T-test for a single mean.
 - Nonparametric: Binomial distribution.
- Examine the "average" (measure of center) of a single population.
 - Parametric method: T-test for a single mean.
 - Nonparametric methods: Test proportion of data at or below hypothesized median less than 50%.

- Examine a proportion
 - Parametric: treat data as 0s and 1s, T-test for a single mean.
 - Nonparametric: Binomial distribution.
- Examine the "average" (measure of center) of a single population.
 - Parametric method: T-test for a single mean.
 - Nonparametric methods: Test proportion of data at or below hypothesized median less than 50%.

- Examine a proportion
 - Parametric: treat data as 0s and 1s, T-test for a single mean.
 - Nonparametric: Binomial distribution.
- Examine the "average" (measure of center) of a single population.
 - Parametric method: T-test for a single mean.
 - Nonparametric methods: Test proportion of data at or below hypothesized median less than 50%.

4/16

Independent Samples

- Parametric: T-test for difference in means.
- Nonparametric: Mann-Whitney U-Test tests whether two populations are drawn from same distribution.
- Paired samples (Dependent Samples)
 - Parametric: Paired samples T-Test
 - Nonparametric: Wilcoxon signed rank test

- Independent Samples
 - Parametric: T-test for difference in means.
 - Nonparametric: Mann-Whitney U-Test tests whether two populations are drawn from same distribution.
- Paired samples (Dependent Samples)
 - Parametric: Paired samples T-Test
 - Nonparametric: Wilcoxon signed rank test

- Independent Samples
 - Parametric: T-test for difference in means.
 - Nonparametric: Mann-Whitney U-Test tests whether two populations are drawn from same distribution.
- Paired samples (Dependent Samples)
 - Parametric: Paired samples T-Test
 - Nonparametric: Wilcoxon signed rank test

- Independent Samples
 - Parametric: T-test for difference in means.
 - Nonparametric: Mann-Whitney U-Test tests whether two populations are drawn from same distribution.
- Paired samples (Dependent Samples)
 - Parametric: Paired samples T-Test
 - Nonparametric: Wilcoxon signed rank test.

- Independent Samples
 - Parametric: T-test for difference in means.
 - Nonparametric: Mann-Whitney U-Test tests whether two populations are drawn from same distribution.
- Paired samples (Dependent Samples)
 - Parametric: Paired samples T-Test
 - Nonparametric: Wilcoxon signed rank test.

- Independent Samples
 - Parametric: T-test for difference in means.
 - Nonparametric: Mann-Whitney U-Test tests whether two populations are drawn from same distribution.
- Paired samples (Dependent Samples)
 - Parametric: Paired samples T-Test
 - Nonparametric: Wilcoxon signed rank test.

Relationships Between Two Variables

- Parametric method: Pearson linear correlation coefficient.
- Nonparametric method: Spearman correlation.
- Two categorical variables: Chi-squared test of independence

Relationships Between Two Variables

- Parametric method: Pearson linear correlation coefficient.
- Nonparametric method: Spearman correlation.
- Two categorical variables: Chi-squared test of independence.

Relationships Between Two Variables

- Parametric method: Pearson linear correlation coefficient.
- Nonparametric method: Spearman correlation.
- Two categorical variables: Chi-squared test of independence.

- Parametric method: Analysis of Variance (ANOVA)
 - Compares the means of two or more populations.
 - Null hypothesis: all populations have the same mean.
 - Alternative hypothesis: at least one population has a mean different than the others.
- Nonparametric method:
 - Kruskal-Wallis test

- Parametric method: Analysis of Variance (ANOVA)
 - Compares the means of two or more populations.
 - Null hypothesis: all populations have the same mean.
 - Alternative hypothesis: at least one population has a mean different than the others.
- Nonparametric method:
 - Kruskal-Wallis test

- Parametric method: Analysis of Variance (ANOVA)
 - Compares the means of two or more populations.
 - Null hypothesis: all populations have the same mean.
 - Alternative hypothesis: at least one population has a mean different than the others.
- Nonparametric method:
 - Kruskal-Wallis test.

- Parametric method: Analysis of Variance (ANOVA)
 - Compares the means of two or more populations.
 - Null hypothesis: all populations have the same mean.
 - Alternative hypothesis: at least one population has a mean different than the others.
- Nonparametric method:
 - Kruskal-Wallis test.

- Parametric method: Analysis of Variance (ANOVA)
 - Compares the means of two or more populations.
 - Null hypothesis: all populations have the same mean.
 - Alternative hypothesis: at least one population has a mean different than the others.
- Nonparametric method:
 - Kruskal-Wallis test.

- Parametric method: Analysis of Variance (ANOVA)
 - Compares the means of two or more populations.
 - Null hypothesis: all populations have the same mean.
 - Alternative hypothesis: at least one population has a mean different than the others.
- Nonparametric method:
 - Kruskal-Wallis test.

- Method for testing for significant differences among means from two or more groups.
- Essentially an extension of the t-test for testing the differences between two means.
- Uses measures of variance to measure for differences in means.
- Total variation in your data is decomposed into two components:
 - Among-group variation: variability that is due to differences among groups, also called explained variation.
 - Within-group variation: total variability within each of the groups, this is unexplained variation.

- Method for testing for significant differences among means from two or more groups.
- Essentially an extension of the t-test for testing the differences between two means.
- Uses measures of variance to measure for differences in means.
- Iotal variation in your data is decomposed into two components:
 - Among-group variation: variability that is due to differences among groups, also called explained variation.
 - Within-group variation: total variability within each of the groups, this is unexplained variation.

- Method for testing for significant differences among means from two or more groups.
- Essentially an extension of the t-test for testing the differences between two means.
- Uses measures of variance to measure for differences in means.
- Total variation in your data is decomposed into two components:
 - Among-group variation: variability that is due to differences among groups, also called explained variation.
 - Within-group variation: total variability within each of the groups, this is unexplained variation.

- Method for testing for significant differences among means from two or more groups.
- Essentially an extension of the t-test for testing the differences between two means.
- Uses measures of variance to measure for differences in means.
- Total variation in your data is decomposed into two components:
 - Among-group variation: variability that is due to differences among groups, also called explained variation.
 - Within-group variation: total variability within each of the groups, this is unexplained variation.

- Method for testing for significant differences among means from two or more groups.
- Essentially an extension of the t-test for testing the differences between two means.
- Uses measures of variance to measure for differences in means.
- Total variation in your data is decomposed into two components:
 - Among-group variation: variability that is due to differences among groups, also called explained variation.
 - Within-group variation: total variability within each of the groups, this is unexplained variation.

- Method for testing for significant differences among means from two or more groups.
- Essentially an extension of the t-test for testing the differences between two means.
- Uses measures of variance to measure for differences in means.
- Total variation in your data is decomposed into two components:
 - Among-group variation: variability that is due to differences among groups, also called explained variation.
 - Within-group variation: total variability within each of the groups, this is unexplained variation.

- Null hypothesis: $\mu_1 = \mu_2 = ... = \mu_K$
- Alternative hypothesis: At least one of the means are different from the others.
- F-test compares whether among-group variation is greater than within-group variation.

- Null hypothesis: $\mu_1 = \mu_2 = ... = \mu_K$
- Alternative hypothesis: At least one of the means are different from the others.
- F-test compares whether among-group variation is greater than within-group variation.

- Null hypothesis: $\mu_1 = \mu_2 = ... = \mu_K$
- Alternative hypothesis: At least one of the means are different from the others.
- F-test compares whether among-group variation is greater than within-group variation.

Randomness: individual observations are assigned to groups randomly.

- Independence: individuals in each group are independent from
- Sufficiently large (?) sample size, or else population must
- Homogeneity of variance: the variances of each of the K

- Randomness: individual observations are assigned to groups randomly.
- Independence: individuals in each group are independent from individuals in another group.
- Sufficiently large (?) sample size, or else population must have a normal distribution.
- Homogeneity of variance: the variances of each of the K groups must be equal $(\sigma_1^2 = \sigma_2^2 = ...\sigma_K^2)$.
 - Levene test for homogeneity of variance can be used to test for this.

- Randomness: individual observations are assigned to groups randomly.
- Independence: individuals in each group are independent from individuals in another group.
- Sufficiently large (?) sample size, or else population must have a normal distribution.
- Homogeneity of variance: the variances of each of the K groups must be equal $(\sigma_1^2 = \sigma_2^2 = ...\sigma_K^2)$.
 - Levene test for homogeneity of variance can be used to test for this.

- Randomness: individual observations are assigned to groups randomly.
- Independence: individuals in each group are independent from individuals in another group.
- Sufficiently large (?) sample size, or else population must have a normal distribution.
- Homogeneity of variance: the variances of each of the K groups must be equal $(\sigma_1^2 = \sigma_2^2 = ...\sigma_K^2)$.
 - Levene test for homogeneity of variance can be used to test for this.

- Randomness: individual observations are assigned to groups randomly.
- Independence: individuals in each group are independent from individuals in another group.
- Sufficiently large (?) sample size, or else population must have a normal distribution.
- Homogeneity of variance: the variances of each of the K groups must be equal $(\sigma_1^2 = \sigma_2^2 = ...\sigma_K^2)$.
 - Levene test for homogeneity of variance can be used to test for this.

- Data on 47 states from 1960 (I know its old) on the crime rate and a number of factors that may influence the crime rate.
- In particular, I made a variable that put unemployment into categories:
 - Unemployment = 1 if unemployment rate was less than 8%
 - Unemployment = 2 if unemployment rate was between 8 and 10%.
 - Unemployment = 3 if unemployment rate was greater than 10%.
- I also made a variable that categorized schooling:
 - Schooling = 1 if mean years of schooling for given state was less than 10 years.
 - Schooling = 2 otherwise
- Is there statistical evidence that the mean crime rate is different among the different categories for the level of unemployment?

- Data on 47 states from 1960 (I know its old) on the crime rate and a number of factors that may influence the crime rate.
- In particular, I made a variable that put unemployment into categories:
 - Unemployment = 1 if unemployment rate was less than 8%.
 - Unemployment = 2 if unemployment rate was between 8 and 10%.
 - Unemployment = 3 if unemployment rate was greater than 10%.
- I also made a variable that categorized schooling:
 - Schooling = 1 if mean years of schooling for given state was less than 10 years.
 - Schooling = 2 otherwise
- Is there statistical evidence that the mean crime rate is different among the different categories for the level of unemployment?

- Data on 47 states from 1960 (I know its old) on the crime rate and a number of factors that may influence the crime rate.
- In particular, I made a variable that put unemployment into categories:
 - Unemployment = 1 if unemployment rate was less than 8%.
 - Unemployment = 2 if unemployment rate was between 8 and 10%.
 - Unemployment = 3 if unemployment rate was greater than 10%.
- I also made a variable that categorized schooling:
 - ullet Schooling = 1 if mean years of schooling for given state was less than 10 years.
 - Schooling = 2 otherwise.
- Is there statistical evidence that the mean crime rate is different among the different categories for the level of unemployment?

- Data on 47 states from 1960 (I know its old) on the crime rate and a number of factors that may influence the crime rate.
- In particular, I made a variable that put unemployment into categories:
 - Unemployment = 1 if unemployment rate was less than 8%.
 - Unemployment = 2 if unemployment rate was between 8 and 10%.
 - Unemployment = 3 if unemployment rate was greater than 10%.
- I also made a variable that categorized schooling:
 - \bullet Schooling =1 if mean years of schooling for given state was less than 10 years.
 - Schooling = 2 otherwise.
- Is there statistical evidence that the mean crime rate is different among the different categories for the level of unemployment?

- ullet R: Crime rate: # of offenses reported to police per million population
- Age: The number of males of age 14-24 per 1000 population
- S: Indicator variable for Southern states (0 = No, 1 = Yes)
- ullet Ed: Mean # of years of schooling imes 10 for persons of age 25 or older
- Ex0: 1960 per capita expenditure on police by state and local government
- Ex1: 1959 per capita expenditure on police by state and local government
- LF: Labor force participation rate per 1000 civilian urban males age 14-24
- M: The number of males per 1000 females
- N: State population size in hundred thousands
- NW: The number of non-whites per 1000 population
- ullet U1: Unemployment rate of urban males per 1000 of age 14-24
- U2: Unemployment rate of urban males per 1000 of age 35-39
- W: Median value of transferable goods and assets or family income in tens of \$
- ullet X: The number of families per 1000 earning below 1/2 the median income

Using SPSS to Conduct One-way ANOVA Tests

- Open Download and open the dataset crime.sav in SPSS.
- Click on Analyze menu, then Compare Means, then select One-Way ANOVA.
- Move Crime rate to the Dependent List.
- Move Unemployment to Factor.
- For extra tests:
 - Click on Post-hoc button for tests to compare pair-wise differences in the means.
 - Click on Options button for descriptive statistics for for homogeneity of variance test.

- Descriptive Statistics: shows the mean unemployment rate for each of the three groups, also includes standard deviation, standard error, and confidence intervals. It's nice to present such statistics in your papers.
- Levene's Test of Homogeneity of Variances. The null hypothesis is that the variances are equal.
- ANOVA Table: presents the sum of squares, the mean sum of squares, the F-statistic, and the p-value.
- Tukey Tests for all pairwise comparisons.

- Kruskal-Wallis Rank Test: non-parametric technique for testing for differences in the medians among two or more groups.
- Like the Mann-Whitney U-test, uses information about the
- Null hypothesis: $\theta_1 = \theta_2 = ... = \theta_K$ (i.e. all groups have the
- Alternative hypothesis: at least one of the medians differ.
- As the sample size gets large (over 5 per group some say!), the Kruskal-Wallis test statistic approaches a χ^2 distribution with K-1 degrees of freedom.
- For small sample sizes: possible to compute exact p-values

- Kruskal-Wallis Rank Test: non-parametric technique for testing for differences in the *medians* among two or more groups.
- Like the Mann-Whitney U-test, uses information about the ranks of the observations, instead of the actual sizes.
- Null hypothesis: $\theta_1 = \theta_2 = ... = \theta_K$ (i.e. all groups have the same median).
- Alternative hypothesis: at least one of the medians differ.
- As the sample size gets large (over 5 per group some say!), the Kruskal-Wallis test statistic approaches a χ^2 distribution with K-1 degrees of freedom.
- For small sample sizes: possible to compute exact p-values without depending on asymptotic distributions.

- Kruskal-Wallis Rank Test: non-parametric technique for testing for differences in the *medians* among two or more groups.
- Like the Mann-Whitney U-test, uses information about the ranks of the observations, instead of the actual sizes.
- Null hypothesis: $\theta_1 = \theta_2 = ... = \theta_K$ (i.e. all groups have the same median).
- Alternative hypothesis: at least one of the medians differ.
- As the sample size gets large (over 5 per group some say!), the Kruskal-Wallis test statistic approaches a χ^2 distribution with K-1 degrees of freedom.
- For small sample sizes: possible to compute exact p-values without depending on asymptotic distributions.

- Kruskal-Wallis Rank Test: non-parametric technique for testing for differences in the *medians* among two or more groups.
- Like the Mann-Whitney U-test, uses information about the ranks of the observations, instead of the actual sizes.
- Null hypothesis: $\theta_1 = \theta_2 = ... = \theta_K$ (i.e. all groups have the same median).
- Alternative hypothesis: at least one of the medians differ.
- As the sample size gets large (over 5 per group some say!), the Kruskal-Wallis test statistic approaches a χ^2 distribution with K-1 degrees of freedom.
- For small sample sizes: possible to compute exact p-values without depending on asymptotic distributions.

- Kruskal-Wallis Rank Test: non-parametric technique for testing for differences in the *medians* among two or more groups.
- Like the Mann-Whitney U-test, uses information about the ranks of the observations, instead of the actual sizes.
- Null hypothesis: $\theta_1 = \theta_2 = ... = \theta_K$ (i.e. all groups have the same median).
- Alternative hypothesis: at least one of the medians differ.
- As the sample size gets large (over 5 per group some say!), the Kruskal-Wallis test statistic approaches a χ^2 distribution with K-1 degrees of freedom.
- For small sample sizes: possible to compute exact p-values without depending on asymptotic distributions.

- Kruskal-Wallis Rank Test: non-parametric technique for testing for differences in the *medians* among two or more groups.
- Like the Mann-Whitney U-test, uses information about the ranks of the observations, instead of the actual sizes.
- Null hypothesis: $\theta_1 = \theta_2 = ... = \theta_K$ (i.e. all groups have the same median).
- Alternative hypothesis: at least one of the medians differ.
- As the sample size gets large (over 5 per group some say!), the Kruskal-Wallis test statistic approaches a χ^2 distribution with K-1 degrees of freedom.
- For small sample sizes: possible to compute exact p-values without depending on asymptotic distributions.

- Randomness: individual observations are assigned to groups randomly.
- Independence: individuals in each group are independent from individuals in another group.
- Only the location (i.e. the center) of the distributions differ among the groups. The populations otherwise have the same distribution.

- Randomness: individual observations are assigned to groups randomly.
- Independence: individuals in each group are independent from individuals in another group.
- Only the location (i.e. the center) of the distributions differ among the groups. The populations otherwise have the same distribution.

Assumptions for Kruskal-Wallis Test

- Randomness: individual observations are assigned to groups randomly.
- Independence: individuals in each group are independent from individuals in another group.
- Only the location (i.e. the center) of the distributions differ among the groups. The populations otherwise have the same distribution.

Using SPSS to Conduct Kruskal-Wallis Test

- Click on Analyze menu, then Nonparametric Tests, then select K-Independent Samples.
- Move Crime rate to Test Variable List.
- Move Unemployment to Grouping Variable.
- Make sure Kruskal-Wallis H text box is selected.
- Olick on Exact button if you need exact p-values.
- Click OK!
- $\ \ \, \ \,$ Results show average ranks for each group and χ^2 test statistic and p-values.