Introduction to Probability

BUS 735: Business Decision Methods and Research

Goals and Agenda

Learning Objective

Learn basics of probability.
Learn what are probability distributions
Learn specific probability dis- Lecture / Practice problems. tributions: Binomial Distribution, Normal Distribution
Learn how to combine random Lecture / Practice Problems. variables.
Practice what we have Group Exercise. learned.
More practice.
Read Chapter 11, Homework exercises.
Assess what we have learned

Active Learning Activity

Lecture / Practice Problems

Lecture / Practice Problems.

Quiz

Basic Probability

- Probability: numeric value between 0 and 1 (or 0% and 100%) representing the chance, likelihood, or possibility some event will occur.
- Event: some possible (or even impossible) outcome occurring.
- Example:
- Computing probability:

Basic Probability

- Probability: numeric value between 0 and 1 (or 0% and 100%) representing the chance, likelihood, or possibility some event will occur.
- Event: some possible (or even impossible) outcome occurring.
- Denote events with capital English letters.
- Example:
- Computing probability:

Basic Probability

- Probability: numeric value between 0 and 1 (or 0% and 100%) representing the chance, likelihood, or possibility some event will occur.
- Event: some possible (or even impossible) outcome occurring.
- Denote events with capital English letters.
- Example:
- Computing probability:

Basic Probability

- Probability: numeric value between 0 and 1 (or 0% and 100%) representing the chance, likelihood, or possibility some event will occur.
- Event: some possible (or even impossible) outcome occurring.
- Denote events with capital English letters.
- Example:
- A: A newborn baby will be female
- $P(A)=0.5$ means there is a 50% chance that a newborn baby is female.
- Computing probability:

Basic Probability

- Probability: numeric value between 0 and 1 (or 0% and 100%) representing the chance, likelihood, or possibility some event will occur.
- Event: some possible (or even impossible) outcome occurring.
- Denote events with capital English letters.
- Example:
- A: A newborn baby will be female.
- $P(A)=0.5$ means there is a 50% chance that a newborn baby is female.
- Computing probability:

Basic Probability

- Probability: numeric value between 0 and 1 (or 0% and 100%) representing the chance, likelihood, or possibility some event will occur.
- Event: some possible (or even impossible) outcome occurring.
- Denote events with capital English letters.
- Example:
- A: A newborn baby will be female.
- $P(A)=0.5$ means there is a 50% chance that a newborn baby is female.
- Computing probability:

Basic Probability

- Probability: numeric value between 0 and 1 (or 0% and 100%) representing the chance, likelihood, or possibility some event will occur.
- Event: some possible (or even impossible) outcome occurring.
- Denote events with capital English letters.
- Example:
- A: A newborn baby will be female.
- $P(A)=0.5$ means there is a 50% chance that a newborn baby is female.
- Computing probability:

- $n(A)=$ number of ways event A can occur.

Basic Probability

- Probability: numeric value between 0 and 1 (or 0% and 100%) representing the chance, likelihood, or possibility some event will occur.
- Event: some possible (or even impossible) outcome occurring.
- Denote events with capital English letters.
- Example:
- A: A newborn baby will be female.
- $P(A)=0.5$ means there is a 50% chance that a newborn baby is female.
- Computing probability:

$$
P(A)=\frac{n(A)}{T}
$$

- $n(A)=$ number of ways event A can occur.

Basic Probability

- Probability: numeric value between 0 and 1 (or 0% and 100%) representing the chance, likelihood, or possibility some event will occur.
- Event: some possible (or even impossible) outcome occurring.
- Denote events with capital English letters.
- Example:
- A: A newborn baby will be female.
- $P(A)=0.5$ means there is a 50% chance that a newborn baby is female.
- Computing probability:

$$
P(A)=\frac{n(A)}{T}
$$

- $n(A)=$ number of ways event A can occur.

Basic Probability

- Probability: numeric value between 0 and 1 (or 0% and 100%) representing the chance, likelihood, or possibility some event will occur.
- Event: some possible (or even impossible) outcome occurring.
- Denote events with capital English letters.
- Example:
- A: A newborn baby will be female.
- $P(A)=0.5$ means there is a 50% chance that a newborn baby is female.
- Computing probability:

$$
P(A)=\frac{n(A)}{T}
$$

- $n(A)=$ number of ways event A can occur.
- $T=$ total number of possible outcomes.

Contingency Table

	Purchased DVR		
TV Purchased	Yes	No	Total
HDTV	38	42	80
Regular TV	70	150	220
Total	108	192	300

- Define Event A: Purchased an HDTV.
- What is $P(A)$?

Joint Events

- Joint Event: is an event that is composed of two or more events.
- Define event C as any event in either A or B.
- Define event C as any event in A and B .

Joint Events

- Joint Event: is an event that is composed of two or more events.
- Define event C as any event in either A or B.
- Notation for event C: $C=A \cup B$ - Notation for probability of event $\mathrm{C}: ~ P(C)=P(A \cup B)$. - Define event C as any event in A and B .

Joint Events

- Joint Event: is an event that is composed of two or more events.
- Define event C as any event in either A or B.
- Notation for event C: $C=A \cup B$
- Notation for probability of event $C: P(C)=P(A \cup B)$,
- Define event C as any event in A and B .

Joint Events

- Joint Event: is an event that is composed of two or more events.
- Define event C as any event in either A or B.
- Notation for event C: $C=A \cup B$
- Notation for probability of event $\mathrm{C}: ~ P(C)=P(A \cup B)$.
- Define event C as any event in A and B .

Joint Events

- Joint Event: is an event that is composed of two or more events.
- Define event C as any event in either A or B.
- Notation for event C: $C=A \cup B$
- Notation for probability of event $\mathrm{C}: ~ P(C)=P(A \cup B)$.
- Define event C as any event in A and B .
- Notation for event $C: C=A \cap B$
- Notation for probability of event $\mathrm{C}: P(C)=P(A \cap B)$.

Joint Events

- Joint Event: is an event that is composed of two or more events.
- Define event C as any event in either A or B.
- Notation for event $\mathrm{C}: C=A \cup B$
- Notation for probability of event $\mathrm{C}: ~ P(C)=P(A \cup B)$.
- Define event C as any event in A and B .
- Notation for event $\mathrm{C}: C=A \cap B$
- Notation for probability of event $\mathrm{C}: P(C)=P(A \cap B)$.

Joint Events

- Joint Event: is an event that is composed of two or more events.
- Define event C as any event in either A or B.
- Notation for event $\mathrm{C}: C=A \cup B$
- Notation for probability of event $\mathrm{C}: ~ P(C)=P(A \cup B)$.
- Define event C as any event in A and B .
- Notation for event $\mathrm{C}: C=A \cap B$
- Notation for probability of event $\mathrm{C}: ~ P(C)=P(A \cap B)$.

Complements of Events

- The complement of an event, A, is the outcome of anything besides A occurring.
- Notation: $A^{\prime}=A^{c}=$ complement of event A.
- $P\left(A^{\prime}\right)=1-P(A)$
- Example: what is the complement of Event A : a newborn baby is a female.

Complements of Events

- The complement of an event, A, is the outcome of anything besides A occurring.
- Notation: $A^{\prime}=A^{c}=$ complement of event A .
- $P\left(A^{\prime}\right)=1-P(A)$.
- Example: what is the complement of Event A: a newborn baby is a female.

Complements of Events

- The complement of an event, A, is the outcome of anything besides A occurring.
- Notation: $A^{\prime}=A^{c}=$ complement of event A .
- $P\left(A^{\prime}\right)=1-P(A)$.
- Example: what is the complement of Event A : a newborn baby is a female.

Complements of Events

- The complement of an event, A, is the outcome of anything besides A occurring.
- Notation: $A^{\prime}=A^{c}=$ complement of event A .
- $P\left(A^{\prime}\right)=1-P(A)$.
- Example: what is the complement of Event A : a newborn baby is a female.

Mutually Exclusive Events

- Two events, A and B, are mutually exclusive if it is impossible for both A and B to occur at the same time.
- Are the following mutually exclusive?

Mutually Exclusive Events

- Two events, A and B, are mutually exclusive if it is impossible for both A and B to occur at the same time.
- Are the following mutually exclusive?
- Event A: A person is currently 8 years old. Event B: A person voted for Obama in the last presidential election
- Event A: A person plays football in high school. Event B: A person plays basketball in high school.
- Event A, Event A'
- Event A: We will go out to eat tonight. Event B: We are going out to eat tomorrow night.

Mutually Exclusive Events

- Two events, A and B, are mutually exclusive if it is impossible for both A and B to occur at the same time.
- Are the following mutually exclusive?
- Event A: A person is currently 8 years old. Event B: A person voted for Obama in the last presidential election.
- Event A: A person plays football in high school. Event B: A person plays basketball in high school.
- Event A, Event A'
- Event A: We will go out to eat tonight. Event B: We are going out to eat tomorrow night.

Mutually Exclusive Events

- Two events, A and B, are mutually exclusive if it is impossible for both A and B to occur at the same time.
- Are the following mutually exclusive?
- Event A: A person is currently 8 years old. Event B: A person voted for Obama in the last presidential election.
- Event A: A person plays football in high school. Event B: A person plays basketball in high school.
- Event A, Event A'
- Event A: We will go out to eat tonight. Event B: We are going out to eat tomorrow night.

Mutually Exclusive Events

- Two events, A and B, are mutually exclusive if it is impossible for both A and B to occur at the same time.
- Are the following mutually exclusive?
- Event A: A person is currently 8 years old. Event B: A person voted for Obama in the last presidential election.
- Event A: A person plays football in high school. Event B: A person plays basketball in high school.
- Event A, Event A'.
- Event A: We will go out to eat tonight. Event B: We are going out to eat tomorrow night.

Mutually Exclusive Events

- Two events, A and B, are mutually exclusive if it is impossible for both A and B to occur at the same time.
- Are the following mutually exclusive?
- Event A: A person is currently 8 years old. Event B: A person voted for Obama in the last presidential election.
- Event A: A person plays football in high school. Event B: A person plays basketball in high school.
- Event A, Event A'.
- Event A: We will go out to eat tonight. Event B: We are going out to eat tomorrow night.

Contingency Table

	Purchased DVR		
TV Purchased	Yes	No	Total
HDTV	38	42	80
Regular TV	70	150	220
Total	108	192	300

- Define Event A: Purchased an HDTV.
- Define Event B: Purchased a DVR.
- Define Event $C=A \cap B$.
- What is $P(C)$?
- Define Event $D=A \cup B$.
- What is $P(D)$?

Contingency Table

	Purchased DVR		
TV Purchased	Yes	No	Total
HDTV	38	42	80
Regular TV	70	150	220
Total	108	192	300

- Define Event A: Purchased an HDTV.
- Define Event B: Purchased a DVR.
- Define Event $C=A \cap B$.
- What is $P(C)$?
- Define Event $D=A \cup B$.
- What is $P(D)$?

Contingency Table

	Purchased DVR		
TV Purchased	Yes	No	Total
HDTV	38	42	80
Regular TV	70	150	220
Total	108	192	300

- Define Event A: Purchased an HDTV.
- Define Event B: Purchased a DVR.
- Define Event $C=A \cap B$.
- What is $P(C)$?
- Define Event $D=A \cup B$.
- What is $P(D)$?

Contingency Table

	Purchased DVR		
TV Purchased	Yes	No	Total
HDTV	38	42	80
Regular TV	70	150	220
Total	108	192	300

- Define Event A: Purchased an HDTV.
- Define Event B: Purchased a DVR.
- Define Event $C=A \cap B$.
- What is $P(C)$?
- Define Event $D=A \cup B$.
- What is $P(D)$?

Contingency Table

	Purchased DVR		
TV Purchased	Yes	No	Total
HDTV	38	42	80
Regular TV	70	150	220
Total	108	192	300

- Define Event A: Purchased an HDTV.
- Define Event B: Purchased a DVR.
- Define Event $C=A \cap B$.
- What is $P(C)$?
- Define Event $D=A \cup B$.
- What is $P(D)$?

Contingency Table

	Purchased DVR		
TV Purchased	Yes	No	Total
HDTV	38	42	80
Regular TV	70	150	220
Total	108	192	300

- Define Event A: Purchased an HDTV.
- Define Event B: Purchased a DVR.
- Define Event $C=A \cap B$.
- What is $P(C)$?
- Define Event $D=A \cup B$.
- What is $P(D)$?

Venn Diagram

- Venn diagram: visualization of all possible events. The areas in the diagram represent the probabilities of those events.
- S: Event that encompasses all possible outcomes.
- Entire area of the left hand circle is $P(B)$
- Entire area of the right hand circle is event $P(A)$.
- The area that is in both of the circles is $P(A \cap B)$

Venn Diagram

- Venn diagram: visualization of all possible events. The areas in the diagram represent the probabilities of those events.
- S: Event that encompasses all possible outcomes.
- Entire area of the left hand circle is $P(B)$.
- Entire area of the right hand circle is event $P(A)$.
- The area that is in both of the circles is $P(A \cap B)$

Venn Diagram

- Venn diagram: visualization of all possible events. The areas in the diagram represent the probabilities of those events.
- S: Event that encompasses all possible outcomes.
- Entire area of the left hand circle is $P(B)$.
- Entire area of the right hand circle is event $P(A)$.
- The area that is in both of the circles is $P(A \cap B)$

Venn Diagram

- Venn diagram: visualization of all possible events. The areas in the diagram represent the probabilities of those events.
- S: Event that encompasses all possible outcomes.
- Entire area of the left hand circle is $P(B)$.
- Entire area of the right hand circle is event $P(A)$.
- The area that is in both of the circles is $P(A \cap B)$

Venn Diagram

- Venn diagram: visualization of all possible events. The areas in the diagram represent the probabilities of those events.
- S: Event that encompasses all possible outcomes.
- Entire area of the left hand circle is $P(B)$.
- Entire area of the right hand circle is event $P(A)$.
- The area that is in both of the circles is $P(A \cap B)$.

Venn Diagram

- From the Venn Diagram we can see that,

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

- Use this equation to find the probability of owning an HDTV (Event A) or owning a DVR (Event B).

Venn Diagram

- From the Venn Diagram we can see that,

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

- Use this equation to find the probability of owning an HDTV (Event A) or owning a DVR (Event B).

Venn Diagram

- From the Venn Diagram we can see that,

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

- Use this equation to find the probability of owning an HDTV (Event A) or owning a DVR (Event B).

	Purchased DVR		
TV Purchased	Yes	No	Total
HDTV	38	42	80
Regular TV	70	150	220
Total	108	192	300

Venn Diagram

- From the Venn Diagram we can see that,

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

- Use this equation to find the probability of owning an HDTV (Event A) or owning a DVR (Event B).

	Purchased DVR		
TV Purchased	Yes	No	Total
HDTV	38	42	80
Regular TV	70	150	220
Total	108	192	300

Conditional probability

- Conditional probability: the probability of an event, A , with the additional information that some other event B has already occurred.
- Example:

Conditional probability

- Conditional probability: the probability of an event, A , with the additional information that some other event B has already occurred.
- Example:
- What is the probability of being female?
- What is the probability of being female, given you are a nurse?

Conditional probability

- Conditional probability: the probability of an event, A , with the additional information that some other event B has already occurred.
- Example:
- What is the probability of being female?

Define event A : a person is female.

- What is the probability of being female, given you are a nurse?

Conditional probability

- Conditional probability: the probability of an event, A, with the additional information that some other event B has already occurred.
- Example:
- What is the probability of being female?

Define event A : a person is female.
$P(A)=0.5$

- What is the probability of being female, given you are a nurse?

Conditional probability

- Conditional probability: the probability of an event, A , with the additional information that some other event B has already occurred.
- Example:
- What is the probability of being female?

Define event A : a person is female.
$P(A)=0.5$

- What is the probability of being female, given you are a nurse?

Conditional probability

- Conditional probability: the probability of an event, A , with the additional information that some other event B has already occurred.
- Example:
- What is the probability of being female?

Define event A : a person is female.
$P(A)=0.5$

- What is the probability of being female, given you are a nurse? Define event B : a person in a nurse.

Conditional probability

- Conditional probability: the probability of an event, A , with the additional information that some other event B has already occurred.
- Example:
- What is the probability of being female?

Define event A: a person is female.
$P(A)=0.5$

- What is the probability of being female, given you are a nurse?

Define event B : a person in a nurse. $P(A \mid B)=0.8$ (I just made that up)

Independence

- Two events A and B are independent if knowledge that A happened does not affect the probability that B occurs, or if knowledge that B happened does not effect the probability that A occurs.
- In the example above, is being female and being a nurse independent?
- More examples:
- If A and B are independent, then $P(A \mid B)=P(A)$ and $P(B \mid A)=P(B)$.

Independence

- Two events A and B are independent if knowledge that A happened does not affect the probability that B occurs, or if knowledge that B happened does not effect the probability that A occurs.
- In the example above, is being female and being a nurse independent?
- More examples:
- If A and B are independent, then $P(A \mid B)=P(A)$ and $P(B \mid A)=P(B)$.

Independence

- Two events A and B are independent if knowledge that A happened does not affect the probability that B occurs, or if knowledge that B happened does not effect the probability that A occurs.
- In the example above, is being female and being a nurse independent?
- More examples:
- Is the event that someone smokes and the event someone has lung cancer independent?
- Suppose a coin is flipped twice. Is the event the first flip is heads and the event the second flip is heads independent?
- If A and B are independent, then $P(A \mid B)=P(A)$ and $P(B \mid A)=P(B)$.

Independence

- Two events A and B are independent if knowledge that A happened does not affect the probability that B occurs, or if knowledge that B happened does not effect the probability that A occurs.
- In the example above, is being female and being a nurse independent?
- More examples:
- Is the event that someone smokes and the event someone has lung cancer independent?
- Suppose a coin is flipped twice. Is the event the first flip is heads and the event the second flip is heads independent?
- If A and B are independent then $P(A \mid B)=P(A)$ and $P(B \mid A)=P(B)$.

Independence

- Two events A and B are independent if knowledge that A happened does not affect the probability that B occurs, or if knowledge that B happened does not effect the probability that A occurs.
- In the example above, is being female and being a nurse independent?
- More examples:
- Is the event that someone smokes and the event someone has lung cancer independent?
- Suppose a coin is flipped twice. Is the event the first flip is heads and the event the second flip is heads independent?
- If A and B are independent, then $P(A \mid B)=P(A)$ and $P(B \mid A)=P(B)$.

Independence

- Two events A and B are independent if knowledge that A happened does not affect the probability that B occurs, or if knowledge that B happened does not effect the probability that A occurs.
- In the example above, is being female and being a nurse independent?
- More examples:
- Is the event that someone smokes and the event someone has lung cancer independent?
- Suppose a coin is flipped twice. Is the event the first flip is heads and the event the second flip is heads independent?
- If A and B are independent, then
$P(A \mid B)=P(A)$ and $P(B \mid A)=P(B)$.

Bayes Theorem

- This is the coolest thing you'll ever learn a math class:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- Why is the cool? Because this proves that:

Bayes Theorem

- This is the coolest thing you'll ever learn a math class:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- Why is the cool? Because this proves that:

Bayes Theorem

- This is the coolest thing you'll ever learn a math class:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- Why is the cool? Because this proves that:

$$
P(A \mid B) \neq P(B \mid A)
$$

Bayes Theorem

- This is the coolest thing you'll ever learn a math class:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- Why is the cool? Because this proves that:

$$
P(A \mid B) \neq P(B \mid A)
$$

Bayes Theorem

- Not so cool example: Suppose $P(A)=0.4, P(B)=0.8$, and $P(A \cap B)=0.2$. What is $P(A \mid B)$?

$$
P(A \mid B)=\frac{0.2}{0.8}=0.25
$$

- Are events A and B independent?

Bayes Theorem

- Not so cool example: Suppose $P(A)=0.4, P(B)=0.8$, and $P(A \cap B)=0.2$. What is $P(A \mid B)$?

$$
P(A \mid B)=\frac{0.2}{0.8}=0.25
$$

- Are events A and B independent?

Bayes Theorem

- Not so cool example: Suppose $P(A)=0.4, P(B)=0.8$, and $P(A \cap B)=0.2$. What is $P(A \mid B)$?

$$
P(A \mid B)=\frac{0.2}{0.8}=0.25
$$

- Are events A and B independent?

Blood test accuracy

- Suppose a fatal disease breaks out, and a blood test is used to detect the disease.
- The blood test claims to accurately identify the disease 99\% of the time.
- Let A be the event you have a disease.
- Let B be the event the blood test came out positive.
- Suppose you take the blood test and it is positive. What is the probability you have the disease?

Blood test accuracy

- Suppose a fatal disease breaks out, and a blood test is used to detect the disease.
- The blood test claims to accurately identify the disease 99% of the time.
- Let A be the event you have a disease.
- Let B be the event the blood test came out positive.
- Suppose you take the blood test and it is positive. What is the probability you have the disease?

Blood test accuracy

- Suppose a fatal disease breaks out, and a blood test is used to detect the disease.
- The blood test claims to accurately identify the disease 99% of the time.
- Let A be the event you have a disease.
- Let B be the event the blood test came out positive.
- Suppose you take the blood test and it is positive. What is the probability you have the disease?

Blood test accuracy

- Suppose a fatal disease breaks out, and a blood test is used to detect the disease.
- The blood test claims to accurately identify the disease 99% of the time.
- Let A be the event you have a disease.
- Let B be the event the blood test came out positive.

$$
P(B \mid A)=0.99
$$

- Suppose you take the blood test and it is positive. What is the probability you have the disease?

Blood test accuracy

- Suppose a fatal disease breaks out, and a blood test is used to detect the disease.
- The blood test claims to accurately identify the disease 99% of the time.
- Let A be the event you have a disease.
- Let B be the event the blood test came out positive.

$$
P(B \mid A)=0.99
$$

- Suppose you take the blood test and it is positive. What is the probability you have the disease?

Blood test accuracy

- Suppose a fatal disease breaks out, and a blood test is used to detect the disease.
- The blood test claims to accurately identify the disease 99% of the time.
- Let A be the event you have a disease.
- Let B be the event the blood test came out positive.

$$
P(B \mid A)=0.99
$$

- Suppose you take the blood test and it is positive. What is the probability you have the disease?

Blood test accuracy

- Suppose a fatal disease breaks out, and a blood test is used to detect the disease.
- The blood test claims to accurately identify the disease 99% of the time.
- Let A be the event you have a disease.
- Let B be the event the blood test came out positive.

$$
P(B \mid A)=0.99
$$

- Suppose you take the blood test and it is positive. What is the probability you have the disease?

$$
P(A \mid B)=?
$$

Blood test accuracy

- Suppose 0.2% of people have the disease, and 0.198% have the disease and tested positive.

$$
\begin{gathered}
P(A)=0.002 \\
P(A \cap B)=0.00198 \\
P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{0.00198}{0.002}=0.99
\end{gathered}
$$

Blood test accuracy

- Suppose 0.2% of people have the disease, and 0.198% have the disease and tested positive.

$$
P(A)=0.002
$$

$$
P(A \cap B)=0.00198
$$

Blood test accuracy

- Suppose 0.2% of people have the disease, and 0.198% have the disease and tested positive.

$$
P(A)=0.002
$$

$$
P(A \cap B)=0.00198
$$

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{0.00198}{0.002}=0.99
$$

Blood test accuracy

- Suppose 0.2% of people have the disease, and 0.198% have the disease and tested positive.

$$
\begin{gathered}
P(A)=0.002 \\
P(A \cap B)=0.00198 \\
P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{0.00198}{0.002}=0.99
\end{gathered}
$$

Blood test accuracy

- Suppose 5% of people test positive for the disease.
- What is the probability you have the disease given you tested positive?
- Even though you tested positive, you still most likely do not have the disease.
- And the test had the claim of being 99% accurate.

Blood test accuracy

- Suppose 5% of people test positive for the disease.
- What is the probability you have the disease given you tested positive?

$$
P(A \mid B)=\frac{P(A \cap B)}{P(A)}=\frac{0.00198}{0.05}=0.0396
$$

- Even though you tested positive, you still most likely do not have the disease.
- And the test had the claim of being 99% accurate.

Blood test accuracy

- Suppose 5% of people test positive for the disease.
- What is the probability you have the disease given you tested positive?

$$
P(A \mid B)=\frac{P(A \cap B)}{P(A)}=\frac{0.00198}{0.05}=0.0396
$$

- Even though you tested positive, you still most likely do not have the disease.
- And the test had the claim of being 99% accurate.

Blood test accuracy

- Suppose 5% of people test positive for the disease.
- What is the probability you have the disease given you tested positive?

$$
P(A \mid B)=\frac{P(A \cap B)}{P(A)}=\frac{0.00198}{0.05}=0.0396
$$

- Even though you tested positive, you still most likely do not have the disease.
- And the test had the claim of being 99\% accurate.

Blood test accuracy

- Suppose 5% of people test positive for the disease.
- What is the probability you have the disease given you tested positive?

$$
P(A \mid B)=\frac{P(A \cap B)}{P(A)}=\frac{0.00198}{0.05}=0.0396
$$

- Even though you tested positive, you still most likely do not have the disease.
- And the test had the claim of being 99% accurate.

Test Accuracies?

So what is the real accuracy of things like blood tests, pregnancy tests, and lie detector tests?

Definitions

- Random variable: a variable that has a single numerical value determined by chance.
- Data is a bunch of realizations of a random variable.
- Discrete random variable: an RV that can take on "countable" values.
- Continuous random variable: a RV that can take on infinitely many values on a continuous scale.

Definitions

- Random variable: a variable that has a single numerical value determined by chance.
- Data is a bunch of realizations of a random variable.
- Discrete random variable: an RV that can take on "countable" values.
- Continuous random variable: a RV that can take on infinitely many values on a continuous scale.

Definitions

- Random variable: a variable that has a single numerical value determined by chance.
- Data is a bunch of realizations of a random variable.
- Discrete random variable: an RV that can take on "countable" values.
- Continuous random variable: a RV that can take on infinitely many values on a continuous scale.

Definitions

- Random variable: a variable that has a single numerical value determined by chance.
- Data is a bunch of realizations of a random variable.
- Discrete random variable: an RV that can take on "countable" values.
- Continuous random variable: a RV that can take on infinitely many values on a continuous scale.

Goals and Agenda

Probability distribution

- A probability distribution is a graph, table, or formula that gives the probability for each value of a random variable.
- The sum of the probabilities for all possible values an RV can take must equal 1 (or 100%).
- Each individual probability must be between zero and one.

Probability distribution

- A probability distribution is a graph, table, or formula that gives the probability for each value of a random variable.
- The sum of the probabilities for all possible values an RV can take must equal 1 (or 100%).

- Each individual probability must be between zero and one.

Probability distribution

- A probability distribution is a graph, table, or formula that gives the probability for each value of a random variable.
- The sum of the probabilities for all possible values an RV can take must equal 1 (or 100%).

$$
\sum P\left(x_{i}\right)=1
$$

- Each individual probability must be between zero and one.

Probability distribution

- A probability distribution is a graph, table, or formula that gives the probability for each value of a random variable.
- The sum of the probabilities for all possible values an RV can take must equal 1 (or 100%).

$$
\sum P\left(x_{i}\right)=1
$$

- Each individual probability must be between zero and one.

Probability distribution

- A probability distribution is a graph, table, or formula that gives the probability for each value of a random variable.
- The sum of the probabilities for all possible values an RV can take must equal 1 (or 100%).

$$
\sum P\left(x_{i}\right)=1
$$

- Each individual probability must be between zero and one.

$$
0 \leq P\left(x_{i}\right) \leq 1
$$

Goals and Agenda

Mean and variance of a probability distribution

- The mean or expected value of a probability distribution is:

- The variance of a probability distribution is given by:

- Try calculating the mean, variance, and standard deviation for the previous example.

Goals and Agenda

Mean and variance of a probability distribution

- The mean or expected value of a probability distribution is:

$$
\mu=\sum x_{i} P\left(x_{i}\right)
$$

- The variance of a probability distribution is given by:
- Try calculating the mean, variance, and standard deviation for the previous example.

Mean and variance of a probability distribution

- The mean or expected value of a probability distribution is:

$$
\mu=\sum x_{i} P\left(x_{i}\right)
$$

- The variance of a probability distribution is given by:

- Try calculating the mean, variance, and standard deviation for the previous example.

Mean and variance of a probability distribution

- The mean or expected value of a probability distribution is:

$$
\mu=\sum x_{i} P\left(x_{i}\right)
$$

- The variance of a probability distribution is given by:

$$
\sigma^{2}=\sum\left[\left(x_{i}-\mu\right)^{2} P\left(x_{i}\right)\right]
$$

- Try calculating the mean, variance, and standard deviation for the previous example.

Mean and variance of a probability distribution

- The mean or expected value of a probability distribution is:

$$
\mu=\sum x_{i} P\left(x_{i}\right)
$$

- The variance of a probability distribution is given by:

$$
\begin{aligned}
\sigma^{2} & =\sum\left[\left(x_{i}-\mu\right)^{2} P\left(x_{i}\right)\right] \\
\sigma^{2} & =\sum\left(x_{i}^{2} P\left(x_{i}\right)\right)-\mu^{2}
\end{aligned}
$$

- Try calculating the mean, variance, and standard deviation for the previous example.

Mean and variance of a probability distribution

- The mean or expected value of a probability distribution is:

$$
\mu=\sum x_{i} P\left(x_{i}\right)
$$

- The variance of a probability distribution is given by:

$$
\begin{aligned}
\sigma^{2} & =\sum\left[\left(x_{i}-\mu\right)^{2} P\left(x_{i}\right)\right] \\
\sigma^{2} & =\sum\left(x_{i}^{2} P\left(x_{i}\right)\right)-\mu^{2}
\end{aligned}
$$

- Try calculating the mean, variance, and standard deviation for the previous example.

Goals and Agenda
Basic Probability

Binomial distributions

- A Bernoulli trial results in a random variable that can only result in success $(x=1)$ or failure $(x=0)$.
- Example: an outcome of heads for a single coin flip is a Bernoulli trial.
- A binomial distribution is the probability distribution for the number of successes in a fixed number of trials.
- Requirements for a binomial distribution:
- Example: What are the possible outcomes for the number of successes in 3 coin flips?

Binomial distributions

- A Bernoulli trial results in a random variable that can only result in success $(x=1)$ or failure ($x=0$).
- Example: an outcome of heads for a single coin flip is a Bernoulli trial.
- A binomial distribution is the probability distribution for the number of successes in a fixed number of trials.
- Requirements for a binomial distribution:
- Example: What are the possible outcomes for the number of successes in 3 coin flips?

Binomial distributions

- A Bernoulli trial results in a random variable that can only result in success $(x=1)$ or failure $(x=0)$.
- Example: an outcome of heads for a single coin flip is a Bernoulli trial.
- A binomial distribution is the probability distribution for the number of successes in a fixed number of trials.
- Requirements for a binomial distribution:
- Example: What are the possible outcomes for the number of successes in 3 coin flips?

Binomial distributions

- A Bernoulli trial results in a random variable that can only result in success $(x=1)$ or failure $(x=0)$.
- Example: an outcome of heads for a single coin flip is a Bernoulli trial.
- A binomial distribution is the probability distribution for the number of successes in a fixed number of trials.
- Requirements for a binomial distribution:
- The experiment must have a fixed number of Bernoulli trials.
- The trials must be independent.
- The probability of success must be the same for each trial.
- Example: What are the possible outcomes for the number of successes in 3 coin flips?

Binomial distributions

- A Bernoulli trial results in a random variable that can only result in success $(x=1)$ or failure $(x=0)$.
- Example: an outcome of heads for a single coin flip is a Bernoulli trial.
- A binomial distribution is the probability distribution for the number of successes in a fixed number of trials.
- Requirements for a binomial distribution:
- The experiment must have a fixed number of Bernoulli trials.
- The trials must be independent.
- The probability of success must be the same for each trial.
- Example: What are the possible outcomes for the number of successes in 3 coin flips?

Binomial distributions

- A Bernoulli trial results in a random variable that can only result in success $(x=1)$ or failure $(x=0)$.
- Example: an outcome of heads for a single coin flip is a Bernoulli trial.
- A binomial distribution is the probability distribution for the number of successes in a fixed number of trials.
- Requirements for a binomial distribution:
- The experiment must have a fixed number of Bernoulli trials.
- The trials must be independent.
- The probability of success must be the same for each trial.
- Example: What are the possible outcomes for the number of successes in 3 coin flips?

Binomial distributions

- A Bernoulli trial results in a random variable that can only result in success $(x=1)$ or failure $(x=0)$.
- Example: an outcome of heads for a single coin flip is a Bernoulli trial.
- A binomial distribution is the probability distribution for the number of successes in a fixed number of trials.
- Requirements for a binomial distribution:
- The experiment must have a fixed number of Bernoulli trials.
- The trials must be independent.
- The probability of success must be the same for each trial.
- Example: What are the possible outcomes for the number of successes in 3 coin flips?

Binomial distributions

- A Bernoulli trial results in a random variable that can only result in success $(x=1)$ or failure ($x=0$).
- Example: an outcome of heads for a single coin flip is a Bernoulli trial.
- A binomial distribution is the probability distribution for the number of successes in a fixed number of trials.
- Requirements for a binomial distribution:
- The experiment must have a fixed number of Bernoulli trials.
- The trials must be independent.
- The probability of success must be the same for each trial.
- Example: What are the possible outcomes for the number of successes in 3 coin flips?

Goals and Agenda
Basic Probability Probability Distributions Combining Random Variables

Binomial probability distribution

- The binomial probability distribution is given by,

- n : number of trials.
- $P(x)$: the probability of x number of successes.
- p is the probability of success for a single Bernoulli trial.
- Calculate the probability distribution of the 3 coin flip experiment.
- Verify $\sum P\left(x_{i}\right)=1$.
- Calculate the expected value for the number of heads.
- Calculate the variance and standard deviation.

Binomial probability distribution

- The binomial probability distribution is given by,

$$
P(x)=\frac{n!}{(n-x)!x!} p^{x}(1-p)^{n-x}
$$

- n : number of trials.
- $P(x)$: the probability of x number of successes.
- p is the probability of success for a single Bernoulli trial.
- Calculate the probability distribution of the 3 coin flip experiment.
- Verify $\sum P\left(x_{i}\right)=1$.
- Calculate the expected value for the number of heads.
- Calculate the variance and standard deviation.

Binomial probability distribution

- The binomial probability distribution is given by,

$$
P(x)=\frac{n!}{(n-x)!x!} p^{x}(1-p)^{n-x}
$$

- n : number of trials.
- $P(x)$: the probability of x number of successes.
- p is the probability of success for a single Bernoulli trial.
- Calculate the probability distribution of the 3 coin flip experiment.
- Verify $\sum P\left(x_{i}\right)=1$.
- Calculate the expected value for the number of heads.
- Calculate the variance and standard deviation.

Binomial probability distribution

- The binomial probability distribution is given by,

$$
P(x)=\frac{n!}{(n-x)!x!} p^{x}(1-p)^{n-x}
$$

- n : number of trials.
- $P(x)$: the probability of x number of successes.
- p is the probability of success for a single Bernoulli trial.
- Calculate the probability distribution of the 3 coin flip experiment.
- Verify $\sum P\left(x_{i}\right)=1$.
- Calculate the expected value for the number of heads.
- Calculate the variance and standard deviation.

Binomial probability distribution

- The binomial probability distribution is given by,

$$
P(x)=\frac{n!}{(n-x)!x!} p^{x}(1-p)^{n-x}
$$

- n : number of trials.
- $P(x)$: the probability of x number of successes.
- p is the probability of success for a single Bernoulli trial.
- Calculate the probability distribution of the 3 coin flip experiment.
- Verify $\sum P\left(x_{i}\right)=1$
- Calculate the expected value for the number of heads.
- Calculate the variance and standard deviation.

Binomial probability distribution

- The binomial probability distribution is given by,

$$
P(x)=\frac{n!}{(n-x)!x!} p^{x}(1-p)^{n-x}
$$

- n : number of trials.
- $P(x)$: the probability of x number of successes.
- p is the probability of success for a single Bernoulli trial.
- Calculate the probability distribution of the 3 coin flip experiment.
- Verify $\sum P\left(x_{i}\right)=1$.
- Calculate the expected value for the number of heads.
- Calculate the variance and standard deviation.

Binomial probability distribution

- The binomial probability distribution is given by,

$$
P(x)=\frac{n!}{(n-x)!x!} p^{x}(1-p)^{n-x}
$$

- n : number of trials.
- $P(x)$: the probability of x number of successes.
- p is the probability of success for a single Bernoulli trial.
- Calculate the probability distribution of the 3 coin flip experiment.
- Verify $\sum P\left(x_{i}\right)=1$.
- Calculate the expected value for the number of heads.
- Calculate the variance and standard deviation.

Binomial probability distribution

- The binomial probability distribution is given by,

$$
P(x)=\frac{n!}{(n-x)!x!} p^{x}(1-p)^{n-x}
$$

- n : number of trials.
- $P(x)$: the probability of x number of successes.
- p is the probability of success for a single Bernoulli trial.
- Calculate the probability distribution of the 3 coin flip experiment.
- Verify $\sum P\left(x_{i}\right)=1$.
- Calculate the expected value for the number of heads.
- Calculate the variance and standard deviation.

Binomial probability distribution

- The binomial probability distribution is given by,

$$
P(x)=\frac{n!}{(n-x)!x!} p^{x}(1-p)^{n-x}
$$

- n : number of trials.
- $P(x)$: the probability of x number of successes.
- p is the probability of success for a single Bernoulli trial.
- Calculate the probability distribution of the 3 coin flip experiment.
- Verify $\sum P\left(x_{i}\right)=1$.
- Calculate the expected value for the number of heads.
- Calculate the variance and standard deviation.

Goals and Agenda

Binomial Distribution

- Recall the mean of a probability distribution:
- For the binomial distribution, this gets more simple:
- Recall the variance of a probability distribution:
- It gets simpler:

Goals and Agenda

Binomial Distribution

- Recall the mean of a probability distribution:

$$
\mu=\sum x_{i} P\left(x_{i}\right)
$$

- For the binomial distribution, this gets more simple:
- Recall the variance of a probability distribution:
- It gets simpler:

Goals and Agenda

Binomial Distribution

- Recall the mean of a probability distribution:

$$
\mu=\sum x_{i} P\left(x_{i}\right)
$$

- For the binomial distribution, this gets more simple:
- Recall the variance of a probability distribution:
- It gets simpler:

Goals and Agenda

Binomial Distribution

- Recall the mean of a probability distribution:

$$
\mu=\sum x_{i} P\left(x_{i}\right)
$$

- For the binomial distribution, this gets more simple:

$$
\mu=n p
$$

- Recall the variance of a probability distribution:
- It gets simpler:

Binomial Distribution

- Recall the mean of a probability distribution:

$$
\mu=\sum x_{i} P\left(x_{i}\right)
$$

- For the binomial distribution, this gets more simple:

$$
\mu=n p
$$

- Recall the variance of a probability distribution:

- It gets simpler:

Binomial Distribution

- Recall the mean of a probability distribution:

$$
\mu=\sum x_{i} P\left(x_{i}\right)
$$

- For the binomial distribution, this gets more simple:

$$
\mu=n p
$$

- Recall the variance of a probability distribution:

$$
\sigma^{2}=\sum\left[\left(x_{i}-\mu\right)^{2} P\left(x_{i}\right)\right]
$$

- It gets simpler:

Binomial Distribution

- Recall the mean of a probability distribution:

$$
\mu=\sum x_{i} P\left(x_{i}\right)
$$

- For the binomial distribution, this gets more simple:

$$
\mu=n p
$$

- Recall the variance of a probability distribution:

$$
\sigma^{2}=\sum\left[\left(x_{i}-\mu\right)^{2} P\left(x_{i}\right)\right]
$$

- It gets simpler:

$$
\sigma^{2}=n p(1-p)
$$

Binomial Distribution

- Recall the mean of a probability distribution:

$$
\mu=\sum x_{i} P\left(x_{i}\right)
$$

- For the binomial distribution, this gets more simple:

$$
\mu=n p
$$

- Recall the variance of a probability distribution:

$$
\sigma^{2}=\sum\left[\left(x_{i}-\mu\right)^{2} P\left(x_{i}\right)\right]
$$

- It gets simpler:

$$
\sigma^{2}=n p(1-p)
$$

Goals and Agenda

Normal Distribution

- A very specific symmetric "bell shaped" curve that predicts precise probabilities for ranges of values.
- Probabilities depend on how far an observation is away from the mean.
- Horizontal Axis: number
 of standard deviations away from the mean.
- Area under the curve represents probability. - Formula:

Normal Distribution

- A very specific symmetric "bell shaped" curve that predicts precise probabilities for ranges of values.
- Probabilities depend on how far an observation is away from the mean.

- Horizontal Axis: number of standard deviations away from the mean.
- Area under the curve represents probability. - Formula:

Normal Distribution

- A very specific symmetric "bell shaped" curve that predicts precise probabilities for ranges of values.
- Probabilities depend on how far an observation is away from the mean.

- Horizontal Axis: number of standard deviations away from the mean.
- Area under the curve represents probability.
- Formula:

Normal Distribution

- A very specific symmetric "bell shaped" curve that predicts precise probabilities for ranges of values.
- Probabilities depend on how far an observation is away from the mean.

- Horizontal Axis: number of standard deviations away from the mean.
- Area under the curve represents probability.
- Formula:

Normal Distribution

- A very specific symmetric "bell shaped" curve that predicts precise probabilities for ranges of values.
- Probabilities depend on how far an observation is away from the mean.

- Horizontal Axis: number of standard deviations away from the mean.
- Area under the curve represents probability.
- Formula:

$$
f(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Normal Distribution

German mathemetician and scientist Carl Friedrich Gauss (1777-1855) derived the normal distribution.

Goals and Agenda
Basic Probability Probability Distributions Combining Random Variables

Random Variables Binomial distribution

Duetsche Mark

BUS 735: Business Decision Methods and Research
Introduction to Probability

Goals and Agenda

Computing Normal Probabilities Using Excel

- =normsdist('val') returns the $P\left(z<^{\prime} v a l^{\prime}\right)$.
- Examples: Suppose Shep's Shoe Shop November sales revenue is normally distributed and has a mean of $\$ 3,500$ with a standard deviation of $\$ 800$.

Computing Normal Probabilities Using Excel

- =normsdist('val') returns the $P\left(z<^{\prime} v a l^{\prime}\right)$.
- Examples: Suppose Shep's Shoe Shop November sales revenue is normally distributed and has a mean of $\$ 3,500$ with a standard deviation of $\$ 800$.
- Suppose Shep's monthly fixed costs are $\$ 2,000$. What is the probability November sales fail to cover fixed costs?
- Shep only has enough inventory to sell $\$ 4,500$ worth of shoes. What is the probability his sales will exceed his inventory?

Computing Normal Probabilities Using Excel

- =normsdist('val') returns the $P\left(z<^{\prime} v a l^{\prime}\right)$.
- Examples: Suppose Shep's Shoe Shop November sales revenue is normally distributed and has a mean of $\$ 3,500$ with a standard deviation of $\$ 800$.
- Suppose Shep's monthly fixed costs are $\$ 2,000$. What is the probability November sales fail to cover fixed costs?
- Shep only has enough inventory to sell \$4,500 worth of shoes. What is the probability his sales will exceed his inventory?

Computing Normal Probabilities Using Excel

- =normsdist('val') returns the $P\left(z<^{\prime} v a l^{\prime}\right)$.
- Examples: Suppose Shep's Shoe Shop November sales revenue is normally distributed and has a mean of $\$ 3,500$ with a standard deviation of $\$ 800$.
- Suppose Shep's monthly fixed costs are $\$ 2,000$. What is the probability November sales fail to cover fixed costs?
- Shep only has enough inventory to sell $\$ 4,500$ worth of shoes. What is the probability his sales will exceed his inventory?

Goals and Agenda
Basic Probability Probability Distributions Combining Random Variables

Random Variables
Binomial distribution
Normal Distribution

Normal Approximation to a Binomial

- Motivation: Questions like,
- Suppose a study concluded that Burger King fills out 10% of its orders inaccurately. If a particular franchise makes 30,000 orders a month, what is the probability it will make more than 3,100 errors in orders?
- Compute $\mathrm{P}(\mathrm{x}=3100), \mathrm{P}(\mathrm{x}=3101), \mathrm{P}(\mathrm{x}=3102), \mathrm{P}(\mathrm{x}=3103)$, $P(x=30,000)$
- That's a ridiculous amount of computations.
- Can you suppose that the number of errors is normally distributed with mean equal to $\mu=n p$, and variance $\sigma^{2}=n p(1-p)$?

Normal Approximation to a Binomial

- Motivation: Questions like,
- Suppose a study concluded that Burger King fills out 10% of its orders inaccurately. If a particular franchise makes 30,000 orders a month, what is the probability it will make more than 3,100 errors in orders?
- Compute $\mathrm{P}(\mathrm{x}=3100), \mathrm{P}(\mathrm{x}=3101), \mathrm{P}(\mathrm{x}=3102), \mathrm{P}(\mathrm{x}=3103)$, $P(x=30,000)$
- That's a ridiculous amount of computations.
- Can you suppose that the number of errors is normally distributed with mean equal to $\mu=n p$, and variance $\sigma^{2}=n p(1-p)$?

Normal Approximation to a Binomial

- Motivation: Questions like,
- Suppose a study concluded that Burger King fills out 10% of its orders inaccurately. If a particular franchise makes 30,000 orders a month, what is the probability it will make more than 3,100 errors in orders?
- Compute $P(x=3100), P(x=3101), P(x=3102), P(x=3103), \ldots$, $P(x=30,000)$.
- That's a ridiculous amount of computations.
- Can you suppose that the number of errors is normally distributed with mean equal to $\mu=n p$, and variance $\sigma^{2}=n p(1-p)$?

Normal Approximation to a Binomial

- Motivation: Questions like,
- Suppose a study concluded that Burger King fills out 10% of its orders inaccurately. If a particular franchise makes 30,000 orders a month, what is the probability it will make more than 3,100 errors in orders?
- Compute $P(x=3100), P(x=3101), P(x=3102), P(x=3103), \ldots$, $P(x=30,000)$.
- That's a ridiculous amount of computations.
- Can you suppose that the number of errors is normally distributed with mean equal to $\mu=n p$, and variance $\sigma^{2}=n p(1-p) ?$

Normal Approximation to a Binomial

- Motivation: Questions like,
- Suppose a study concluded that Burger King fills out 10% of its orders inaccurately. If a particular franchise makes 30,000 orders a month, what is the probability it will make more than 3,100 errors in orders?
- Compute $P(x=3100), P(x=3101), P(x=3102), P(x=3103), \ldots$, $P(x=30,000)$.
- That's a ridiculous amount of computations.
- Can you suppose that the number of errors is normally distributed with mean equal to $\mu=n p$, and variance $\sigma^{2}=n p(1-p) ?$

Goals and Agenda
Basic Probability

Normal Approximation to a Binomial

- Can you suppose that the number of errors is normally distributed with mean equal to $\mu=n p$, and variance $\sigma^{2}=n p(1-p)$?
- Well... the number of errors is truly a binomial distribution, not a normal distribution.
- And... the number of errors is a discrete random variable, but the normal distribution is for continuous random variables.
- But... the normal distribution will be a good approximation if,

Goals and Agenda

Normal Approximation to a Binomial

- Can you suppose that the number of errors is normally distributed with mean equal to $\mu=n p$, and variance $\sigma^{2}=n p(1-p)$?
- Well... the number of errors is truly a binomial distribution, not a normal distribution.
- And... the number of errors is a discrete random variable, but the normal distribution is for continuous random variables.
- But... the normal distribution will be a good approximation if,

Normal Approximation to a Binomial

- Can you suppose that the number of errors is normally distributed with mean equal to $\mu=n p$, and variance $\sigma^{2}=n p(1-p)$?
- Well... the number of errors is truly a binomial distribution, not a normal distribution.
- And... the number of errors is a discrete random variable, but the normal distribution is for continuous random variables.
- But... the normal distribution will be a good approximation if,

Normal Approximation to a Binomial

- Can you suppose that the number of errors is normally distributed with mean equal to $\mu=n p$, and variance $\sigma^{2}=n p(1-p) ?$
- Well... the number of errors is truly a binomial distribution, not a normal distribution.
- And... the number of errors is a discrete random variable, but the normal distribution is for continuous random variables.
- But... the normal distribution will be a good approximation if,

Normal Approximation to a Binomial

- Can you suppose that the number of errors is normally distributed with mean equal to $\mu=n p$, and variance $\sigma^{2}=n p(1-p) ?$
- Well... the number of errors is truly a binomial distribution, not a normal distribution.
- And... the number of errors is a discrete random variable, but the normal distribution is for continuous random variables.
- But... the normal distribution will be a good approximation if,

$$
n p>5 \text { and } n(1-p)>5
$$

Covariance

- To measure the variance of combinations of RVs, need to know the covariance.
- Covariance: measure of how two RVs move together.
- Notation:
- Interpretations:

Covariance

- To measure the variance of combinations of RVs, need to know the covariance.
- Covariance: measure of how two RVs move together.
- Notation
- Interpretations:

Covariance

- To measure the variance of combinations of RVs, need to know the covariance.
- Covariance: measure of how two RVs move together.
- Notation:
- $\sigma_{x y}$: population covariance.
- $s_{x y}$: sample covariance.
- Interpretations:

Covariance

- To measure the variance of combinations of RVs, need to know the covariance.
- Covariance: measure of how two RVs move together.
- Notation:
- $\sigma_{x y}$: population covariance.
- $s_{x y}$: sample covariance.
- Interpretations:

Covariance

- To measure the variance of combinations of RVs, need to know the covariance.
- Covariance: measure of how two RVs move together.
- Notation:
- $\sigma_{x y}$: population covariance.
- $s_{x y}$: sample covariance.
- Interpretations

Covariance

- To measure the variance of combinations of RVs, need to know the covariance.
- Covariance: measure of how two RVs move together.
- Notation:
- $\sigma_{x y}$: population covariance.
- $s_{x y}$: sample covariance.
- Interpretations:
- When covariance is negative, variables move in opposite directions.
- When covariance is positive, variables move in same direction.

Covariance

- To measure the variance of combinations of RVs, need to know the covariance.
- Covariance: measure of how two RVs move together.
- Notation:
- $\sigma_{x y}$: population covariance.
- $s_{x y}$: sample covariance.
- Interpretations:
- When covariance is negative, variables move in opposite directions.
- When covariance is positive, variables move in same direction

Covariance

- To measure the variance of combinations of RVs, need to know the covariance.
- Covariance: measure of how two RVs move together.
- Notation:
- $\sigma_{x y}$: population covariance.
- $s_{x y}$: sample covariance.
- Interpretations:
- When covariance is negative, variables move in opposite directions.
- When covariance is positive, variables move in same direction.

Combining Random Variables

- Suppose two RVs are measured in the same units, can they be combined (added, subtracted, etc)?
- Who would want to do such a thing?
- Addition rule:

Combining Random Variables

- Suppose two RVs are measured in the same units, can they be combined (added, subtracted, etc)?
- Who would want to do such a thing?
- Addition rule:

Combining Random Variables

- Suppose two RVs are measured in the same units, can they be combined (added, subtracted, etc)?
- Who would want to do such a thing?
- Addition rule:
- If $Z=X+Y$, then $E(Z)=E(X)+E(Y)$.
- More generally, if $Z=a X+b Y$, then

$$
E(Z)=a E(X)+b E(Y) .
$$

Combining Random Variables

- Suppose two RVs are measured in the same units, can they be combined (added, subtracted, etc)?
- Who would want to do such a thing?
- Addition rule:
- If $Z=X+Y$, then $E(Z)=E(X)+E(Y)$.
- More generally, if $Z=a X+b Y$, then $E(Z)=a E(X)+b E(Y)$.

Combining Random Variables

- Suppose two RVs are measured in the same units, can they be combined (added, subtracted, etc)?
- Who would want to do such a thing?
- Addition rule:
- If $Z=X+Y$, then $E(Z)=E(X)+E(Y)$.
- More generally, if $Z=a X+b Y$, then

$$
E(Z)=a E(X)+b E(Y)
$$

Goals and Agenda
Basic Probability

Variance of Combinations

- Suppose $Z=X+Y$:

$$
\operatorname{VAR}(X+Y)=\operatorname{VAR}(X)+\operatorname{VAR}(Y)+2 \operatorname{COV}(X, Y)
$$

- Suppose $Z=a X+b Y$:

Goals and Agenda
Basic Probability

Variance of Combinations

- Suppose $Z=X+Y$:

$$
\operatorname{VAR}(X+Y)=\operatorname{VAR}(X)+\operatorname{VAR}(Y)+2 \operatorname{COV}(X, Y)
$$

- Suppose $Z=a X+b Y$:

Goals and Agenda
Basic Probability
Combining Random Variables

Variance of Combinations

- Suppose $Z=X+Y$:

$$
\operatorname{VAR}(X+Y)=\operatorname{VAR}(X)+\operatorname{VAR}(Y)+2 \operatorname{COV}(X, Y)
$$

- Suppose $Z=a X+b Y$:
$\operatorname{VAR}(a X+b Y)=a^{2} \operatorname{VAR}(X)+b^{2} \operatorname{VAR}(Y)+2 a b \operatorname{COV}(X, Y)$.

Variance of Combinations

- Suppose $Z=X+Y$:

$$
\operatorname{VAR}(X+Y)=\operatorname{VAR}(X)+\operatorname{VAR}(Y)+2 \operatorname{COV}(X, Y)
$$

- Suppose $Z=a X+b Y$:

$$
\operatorname{VAR}(a X+b Y)=a^{2} \operatorname{VAR}(X)+b^{2} \operatorname{VAR}(Y)+2 a b \operatorname{COV}(X, Y)
$$

Goals and Agenda Combining Random Variables

Portfolio Risk

- Don't put all your eggs in one basket.
- Would it make more sense to put your money in two investments that are negatively correlated (meaning they have a negative covariance)?
- Example, suppose the variance for the quarterly return is equal to 15% for Investment X and 10% for Investment Y , and the covariance is equal to -8%. Suppose you invested have your money in each investment.
- Would it make more sense to put your money in two investments that are positively correlated (meaning they have a positive covariance)?
- Example, suppose the variance for the quarterly return is equal to 18% for Investment X and 12% for Investment Y , and the covariance is equal to 6%. Suppose you invested have your money in each investment.

Portfolio Risk

- Don't put all your eggs in one basket.
- Would it make more sense to put your money in two investments that are negatively correlated (meaning they have a negative covariance)?
- Example, suppose the variance for the quarterly return is equal to 15% for Investment X and 10% for Investment Y , and the covariance is equal to -8%. Suppose you invested have your money in each investment.
- Would it make more sense to put your money in two investments that are positively correlated (meaning they have a positive covariance)?
- Example, suppose the variance for the quarterly return is equal to 18% for Investment X and 12% for Investment Y , and the covariance is equal to 6%. Suppose you invested have your money in each investment.

Portfolio Risk

- Don't put all your eggs in one basket.
- Would it make more sense to put your money in two investments that are negatively correlated (meaning they have a negative covariance)?
- Example, suppose the variance for the quarterly return is equal to 15% for Investment X and 10% for Investment Y , and the covariance is equal to -8%. Suppose you invested have your money in each investment.
- Would it make more sense to put your money in two investments that are positively correlated (meaning they have a positive covariance)?
- Example, suppose the variance for the quarterly return is equal to 18% for Investment X and 12% for Investment Y, and the covariance is equal to 6%. Suppose you invested have your money in each investment
- Don't put all your eggs in one basket.
- Would it make more sense to put your money in two investments that are negatively correlated (meaning they have a negative covariance)?
- Example, suppose the variance for the quarterly return is equal to 15% for Investment X and 10% for Investment Y , and the covariance is equal to -8%. Suppose you invested have your money in each investment.
- Would it make more sense to put your money in two investments that are positively correlated (meaning they have a positive covariance)?
- Example, suppose the variance for the quarterly return is equal to 18% for Investment X and 12% for Investment Y, and the covariance is equal to 6%. Sunpose you invested have your money in each investment

Portfolio Risk

- Don't put all your eggs in one basket.
- Would it make more sense to put your money in two investments that are negatively correlated (meaning they have a negative covariance)?
- Example, suppose the variance for the quarterly return is equal to 15% for Investment X and 10% for Investment Y , and the covariance is equal to -8%. Suppose you invested have your money in each investment.
- Would it make more sense to put your money in two investments that are positively correlated (meaning they have a positive covariance)?
- Example, suppose the variance for the quarterly return is equal to 18% for Investment X and 12% for Investment Y , and the covariance is equal to 6%. Suppose you invested have your money in each investment.

Next time...

- (Re)read the textbook on this topic (BWT, Chapter 11).
- Homework assignment: End of Chapter 11 problems 7, 9, 11c, 13c, 19, 21, 31, 33, 37.
- Quiz on this topic.
- Next topic: Decision Analysis (BWT, Chapter 12).

