
Regression Analysis

BUS 735: Business Decision Making and Research

1 Goals and Agenda

Goals of this section

Specific goals

• Learn how to detect relationships between ordinal and categorical variables.

• Learn how to estimate a linear relationship between many variables.

Learning objectives

• LO2: Be able to construct and use multiple regression models (including some limited dependent variable models) to
construct and test hypotheses considering complex relationships among multiple variables.

• LO6: Be able to use standard computer packages such as SPSS and Excel to conduct the quantitative analyses described
in the learning objectives above.

• LO7: Have a sound familiarity of various statistical and quantitative methods in order to be able to approach a business
decision problem and be able to select appropriate methods to answer the question.

Agenda
Learning Objective Active Learning Activity
Learn statistical techniques for finding relation-
ships between two variables

Lecture / Practice with SPSS

Learn statistical techniques for finding relation-
ships between a dependent variable and one or
more explanatory variables

Lecture / Practice

Be able to use these techniques In-class Exercise
Be familiar with assumptions behind multiple re-
gression model.

Lecture

Evaluate appropriateness of assumptions made
when using the multiple regression model.

Practice with SPSS

More practice! Homework assignment, due Tuesday, Sept 24.

2 Relationships Between Two Variables

2.1 Correlation

Correlation

• Pearson linear correlation coefficient: a value between -1 and +1 that is used to measure the strength
of a positive or negative linear relationship.

– Valid for interval or ratio data.

– Not appropriate for ordinal or nominal data.

– Test depends on assumptions behind the central limit theorem (CLT)

• Spearman rank correlation: non-parametric test.

– Valid for small sample sizes (when assumptions of CLT are violated)

– Appropriate for interval, ratio, and even ordinal data.

– Still makes no sense to use for nominal data.
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Positive linear correlation

• Positive correlation: two variables move in the same direction.

• Stronger the correlation: closer the correlation coefficient is to 1.

• Perfect positive correlation: ρ = 1

Negative linear correlation

• Negative correlation: two variables move in opposite directions.

• Stronger the correlation: closer the correlation coefficient is to -1.

• Perfect negative correlation: ρ = −1

No linear correlation

• Panel (g): no relationship at all.

• Panel (h): strong relationship, but not a linear relationship.

– Cannot use regular correlation to detect this.
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SPSS Step-by-step: Hypothesis testing about a correlation

• Data from 1960 about public expenditures per capita, and variables that may influence it:

– Economic Ability Index

– Percentage of people living in metropolitan areas.

– Percentage growth rate of population from 1950-1960.

– Percentage of population between the ages of 5-19.

– Percentage of population over the age of 65.

– Dummy variable: Western state (1) or not (0).

• Is there a statistically significant linear correlation between the percentage of the population who is
young and the public expenditure per capita?

• Is there a statistically significant linear correlation between the public expenditure per capita and
whether or not the state is a western state?

1. Open the dataset publicexp.sav in SPSS.

2. For a parametric test (Pearson correlation):

3. Select Analyze menu, select Correlate, then select Bivariate.

4. Select at least two variables (it will do all pairwise comparisons) on the left and click right arrow
button.

5. Select check-box for Pearson and/or Spearman.

6. Click OK!

2.2 Chi-Squared Test of Independence

Chi-Squared Test for Independence

• Used to determine if two categorical variables (eg: nominal) are related.

• Example: Suppose a hotel manager surveys guest who indicate they will not return:

Reason for Not Returning
Reason for Stay Price Location Amenities
Personal/Vacation 56 49 0
Business 20 47 27

• Data in the table are always frequencies that fall into individual categories.

• Could use this table to test if two variables are independent.

Test of independence

• Null hypothesis: there is no relationship between the row variable and the column variable.

• Alternative hypothesis: The two variables are dependent.

• Test statistic:

χ2 =
∑ (O − E)

2

E

• O: observed frequency in a cell from the contingency table.

• E: expected frequency assuming variables are independent.
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• Large χ2 values indicate variables are dependent (reject the null hypothesis).

SPSS Step-by-step: Chi-Squared Test of Independence (of two categorical variables)

• Dataset: hotel.sav.

• First column, ReasonStay: 0=Personal/Vacation, 1=Business.

• Second column, NoReturn: 0=Price, 1=Location, 2=Amenities.

• Go to Analyze, Descriptive Statistics, Crosstabs.

• Put one of the variables in the Row(s) box.

• Put the other variable in the Column(s) box.

• Click Statistics button.

• Check the box for Chi-square.

• Click OK!

3 Regression

3.1 Single Variable Regression

Regression

• Regression line: equation of the line that describes the linear relationship between variable x and
variable y.

• Need to assume that independent variables influence dependent variables.

– x: independent or explanatory variable.

– y: dependent variable.

– Variable x can influence the value for variable y, but not vice versa.

• Example: How does smoking affect lung capacity?

• Example: How does advertising affect sales?

Regression line

• Population regression line:
yi = β0 + β1xi + εi

• The actual coefficients β0 and β1 describing the relationship between x and y are unknown.

• Use sample data to come up with an estimate of the regression line:

yi = b0 + b1xi + ei

• Since x and y are not perfectly correlated, still need to have an error term.
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Predicted values and residuals

• Given a value for xi, can come up with a predicted value for yi, denoted ŷi.

ŷi = b0 + b1xi

• This is not likely be the actual value for yi.

• Residual is the difference in the sample between the actual value of yi and the predicted value, ŷ.

ei = yi − ŷ = yi − b0 − b1xi

3.2 Multiple Regression

Multiple Regression

• Multiple regression line (population):

yi = β0 + β1x1,i + β2x2 + ...+ βk−1xk−1 + εi

• Multiple regression line (sample):

yi = b0 + b1x1,i + b2x2 + ...+ bkxk + ei

– k: number of parameters (coefficients) you are estimating.

– εi: error term, since linear relationship between the x variables and y are not perfect.

– ei: residual = the difference between the predicted value ŷ and the actual value yi.

Interpreting the slope

• Interpreting the slope, β: amount the y is predicted to increase when increasing x by one unit.

• When β < 0 there is a negative linear relationship.

• When β > 0 there is a positive linear relationship.

• When β = 0 there is no linear relationship between x and y.

• SPSS reports sample estimates for coefficients, along with...

– Estimates of the standard errors.

– T-test statistics for H0 : β = 0.

– P-values of the T-tests.

– Confidence intervals for the coefficients.

Least Squares Estimate

• How should we obtain the “best fitting line”.

• Ordinary least squares (OLS) method.

• Choose sample estimates for the regression coefficients that minimizes:

n∑
i=0

(yi − ŷi)
2
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Example: Public Expenditure

• Data from 1960 about public expenditures per capita, and variables that may influence it.

• In SPSS, choose Analyze menu and select Regression and Linear.

• Select EX (Expenditure per capita) as your dependent variable. This is the variable your are interested
in explaining.

• Select your independent (aka explanatory) variables. These are the variables that you think can explain
the dependent variable. I suggest you select these:

– ECAB: Economic Ability

– MET: Metropolitan

– GROW: Growth rate of population

– WEST: Western state = 1.

Example: Public Expenditure

• If the percentage of the population living in metropolitan areas in expected to increase by 1%, what
change should we expect in public expenditure?

• Is this change statistically significantly different from zero?

• Accounting for economic ability, metropolitan population, and population growth, how much more to
Western states spend on public expenditure per capita?

SPSS Step-by-step: Multiple Regression

1. Open publicexp.sav in SPSS.

2. Select from menu: Analyze, Regression, then Linear.

3. Move EX to the Dependent variable list.

4. Move ECAB, MET, GROW, and WEST to your Independent variable list.

5. Click OK!

Regression output shows:

• Coefficient of Determination (aka R2) (more on this ahead...)

• Analysis of Variance Table (more on this ahead...)

• Coefficient Estimates, including standard errors, t-statistics, p-values.

3.3 Variance Decomposition

Sum of Squares Measures of Variation

• Sum of Squares Regression (SSR): measure of the amount of variability in the dependent (Y)
variable that is explained by the independent variables (X’s).

SSR =

n∑
i=1

(ŷi − ȳ)
2

• Sum of Squares Error (SSE): measure of the unexplained variability in the dependent variable.

SSE =

n∑
i=1

(yi − ŷi)
2
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Sum of Squares Measures of Variation

• Sum of Squares Total (SST): measure of the total variability in the dependent variable.

SST =

n∑
i=1

(yi − ȳ)
2

• SST = SSR + SSE.

Coefficient of determination

• The coefficient of determination is the percentage of variability in y that is explained by x.

R2 =
SSR

SST

• R2 will always be between 0 and 1. The closer R2 is to 1, the better x is able to explain y.

• The more variables you add to the regression, the higher R2 will be.

Adjusted R2

• R2 will likely increase (slightly) even by adding nonsense variables.

• Adding such variables increases in-sample fit, but will likely hurt out-of-sample forecasting accuracy.

• The Adjusted R2 penalizes R2 for additional variables.

R2
adj = 1 − n− 1

n− k − 1

(
1 −R2

)
• When the adjusted R2 increases when adding a variable, then the additional variable really did help

explain the dependent variable.

• When the adjusted R2 decreases when adding a variable, then the additional variable does not help
explain the dependent variable.

F-test for Regression Fit

• F-test for Regression Fit: Tests if the regression line explains the data.

• Very, very, very similar to ANOVA F-test.

• H0 : β1 = β2 = ... = βk = 0.

• H1 : At least one of the variables has explanatory power (i.e. at least one coefficient is not equal to
zero).

F =
SSR/(k − 1)

SSE/(n− k)

• Where k is the number of explanatory variables.
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Example: Public Expenditure

• In the previous example, how much of the variability in public expenditure is explained by the following
four variables:

– ECAB: Economic Ability

– MET: Metropolitan

– GROW: Growth rate of population

– WEST: Western state = 1.

• Is the combination of these variables significant in explaining public expenditure?

• Re-run the regression, this time also including:

– YOUNG: Percentage of population that is young.

– OLD: Percentage of population that is old.

Example: Public Expenditure

• What happened to the coefficient of determination?

• What happened to the adjusted coefficient of determination? What is your interpretation?

• What happened to the estimated effect of the other variables: metropolitan area? Western state?
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In-class exercise: Multiple Regression
The dataset house.sav data on 239 recently sold houses including the selling price (in thousands of dollars),
the size of the house (in square feet), the number of bedrooms, whether or not the house is on a corner lot
(1=corner lot, 0=otherwise) and the age of the house in years. Develop a regression model that can help
potential home sellers figure out how much they might get for their house based on the other variables in
the dataset.

1. Estimate the regression equation and write down the estimated equation.

2. What is your prediction for the average selling price of a house that is on a corner lot, has 3 bedrooms,
is 2412 square feet, and is 18 years old?

3. What percentage of the variability in selling price is explained by your explanatory variables?
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In-class exercise: Multiple Regression (Continued)

4. Suppose your real estate agent said the age of the house has no bearing on the selling price of a house,
it is only the other factors that are important along with preparing your house so that is looks visually
attractive to buyers. Test the real estate agent’s claim. What is your conclusion?

5. Test the hypothesis that at least one of your explanatory variables in your regression model helps
explain housing prices.

6. Think about this example. Is there any reason why any of the explanatory variables might be corre-
lated? Which ones? For these variables, compute the Pearson Correlation Coefficient and test whether
the correlation is different from zero.
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4 Assumptions

4.1 Assumptions from the CLT

Assumptions from the CLT

• Using the normal distribution to compute p-values depends on results from the Central Limit Theorem.

• Sufficiently large sample size (much more than 30).

– Useful for normality result from the Central Limit Theorem

– Also necessary as you increase the number of explanatory variables.

• Normally distributed dependent and independent variables

– Useful for small sample sizes, but not essential as sample size increases.

• Types of data:

– Dependent variable must be interval or ratio.

– Independent variable can be interval, ratio, or a dummy variable.

4.2 Crucial Assumptions for Regression

Crucial Assumptions for Regression

• Linearity: a straight line reasonably describes the data.

– Exceptions: experience on productivity, ordinal data like education level on income.

– Consider transforming variables.

• Stationarity:

– The central limit theorem: behavior of statistics as sample size approaches infinity!

– The mean and variance must exist and be constant.

– Big issue in economic and financial time series.

• Exogeneity of explanatory variables.

– Dependent variable must not influence explanatory variables.

– Explanatory variables must not be influenced by excluded variables that can influence dependent
variable.

– Example problem: how does advertising affect sales?

4.3 Multicollinearity

Multicollinearity

• Multicollinearity: when two or more of the explanatory variables are highly correlated.

• With multicollinearity, it is difficult to determine the effect coming from a specific individual variable.

• Correlated variables will have standard errors for coefficients will be large (coefficients will be statisti-
cally insignificant).

• Examples:

– experience and age used to predict productivity

– size of store (sq feet) and store sales used to predict demand for inventories.

– parent’s income and parent’s education used to predict student performance.

• Perfect multicollinearity - when two variables are perfectly correlated.
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4.4 Homoscedasticity

Homoscedasticity

• Homoscedasticity: when the variance of the error term is constant (it does not depend on other
variables).

• Counter examples (heteroscedasticity):

– Impact of income on demand for houses.

– Many economic and financial variables related to income suffer from this.

• Heteroscedasticity is not too problematic:

– Estimates will still be unbiased.

– Your standard errors will be downward biased (reject more than you should).

• May be evidence of a bigger problem: linearity or stationarity.

SPSS Step-by-step: Examine violations of assumptions

• To examine multicollinearity possibilities:

– Check standard errors / significance levels of your coefficients - if variables that could be related
are insignificant (have a large standard error), then there may be a problem.

– Compute Pearson correlation coefficients for potential problematic variables.

1. Select from menu: Analyze, Correlate, then Bivariate.

2. Move all your Explanatory variables to the Variables box.

3. Select checkbox for Pearson.

4. Click OK.

– Do you find any variables highly correlated with one another?

• To examine normality of error term:

– Check to see if the residuals are normally distributed.

1. Set up regression dialog as before.

2. Click Plots

3. Select checkbox for Normal Probability Plot.

4. Select checkbox for Histogram.

5. Click Continue

6. Click OK.

– The histogram of standardized residuals should appear bell-shaped.

– The Normal Probability Plot should contain datapoints close to the line, with no discernible
pattern.

– Do the residuals appear to be approximately normally distributed?

• To examine homoscedasticity / linearity issues

– Compute standardized residuals.

1. Set up regression dialog as before.

2. Click Save

3. Under Residuals, select checkbox for Standardized.

4. Click Continue

5. Click OK.
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– Plot residuals against one of the explanatory variable to look for a pattern (there shouldn’t be
any).

1. Select menu item Graphs, Legacy Dialogs, Scatter/Dot

2. Select Simple Scatter and click Define

3. Move standardized residuals to the Y-Axis, move one of the continuous explanatory variables
to the X-Axis.

4. Click OK.

– Things to look for:

∗ These plots should have residuals randomly above and below zero with no discernible pattern
(violation may imply a non-linear relationship).

∗ Variability of residuals (how spread out they are) should not change as explanatory variable
changes (violation implies heteroscedasticity).
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Homework: Regression Analysis
Due on Tuesday, September 24. Please upload to the appropriate D2L dropbox.

The owner of a moving company needs to estimate how many hours of labor will be required for each
upcoming move. Being able to accurately predict this will allow the owner to schedule the right number of
employees for each move. If he sends too many employees, he wastes his resources. If he sends too few, his
customers are likely to get upset. He collects data from 100 past moves and records how many labor hours
the move required, how large the residence was (in square feet), how many bedrooms the residence had, how
many exceptionally large items needed to be carried, and whether or not the residence was an apartment
(=1 for apartment, =0 for house). The data is given in moving.sav

1. Estimate the regression equation and write down the estimated equation.

2. Suppose the moving company’s next customer has a 3 bedroom house (not an apartment) that is 1800
square feet, has two large items that need to be moved. What is your prediction for how many labor
hours will be required?

3. What percentage of the variability in labor hours is explained by your explanatory variables?

4. Does it matter whether or not the residence is part of an apartment building or not when determining
labor hours for moving? Test the appropriate hypothesis and clearly state your conclusion.

5. Test the hypothesis that at least one of your explanatory variables in your regression model helps
explain labor hours for moving.

6. Think about this example. Is there any reason why any of the explanatory variables might be corre-
lated? Which ones? For these variables, compute the Pearson Correlation Coefficient and test whether
the correlation is different from zero.

7. Examine whether the relationship is in fact linear. Create scatter plots for each of the pairs of variables
below. Comment on each, does a linear relationship look appropriate?

(a) X=area of house, Y=labor hours

(b) X=number of bedrooms, Y=labor hours

(c) X=number of large items, Y=labor hours

8. Save the residuals from your regression. Is there evidence the residuals are normally distributed? Show
the appropriate evidence.

9. Create scatter plots for the residuals against each of the explanatory variables as described below. Is
there any evidence of heteroscedasticity?

(a) X=area of house, Y=residuals

(b) X=number of bedrooms, Y=residuals

(c) X=number of large items, Y=residuals
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