Decision Making

BUS 735: Business Decision Making and Research

Learning Objective
Learn how to simulate probability distribution
Learn how to simulate inven- Example problem in Excel. tory systems.
Learn how to simulate queuing Example problem in Excel systems.
More practice. Read Chapter 14, Homework exercises.

Simulating Probability Distributions

- Simulation: drawing random numbers from a probability distribution.
- Monte Carlo Simulation: Use simulated data to simply compute means, standard deviations, etc.
- More complicated computations can be made based on the simulated data.

Simulating Probability Distributions

- Simulation: drawing random numbers from a probability distribution.
- Monte Carlo Simulation: Use simulated data to simply compute means, standard deviations, etc.
- More complicated computations can be made based on the simulated data.
- Simulation: drawing random numbers from a probability distribution.
- Monte Carlo Simulation: Use simulated data to simply compute means, standard deviations, etc.
- More complicated computations can be made based on the simulated data.
- Create linear combinations of variables.
- Take ratios!
- Simulation: drawing random numbers from a probability distribution.
- Monte Carlo Simulation: Use simulated data to simply compute means, standard deviations, etc.
- More complicated computations can be made based on the simulated data.
- Create linear combinations of variables.
- Take ratios!
- Simulation: drawing random numbers from a probability distribution.
- Monte Carlo Simulation: Use simulated data to simply compute means, standard deviations, etc.
- More complicated computations can be made based on the simulated data.
- Create linear combinations of variables.
- Take ratios!

Example

- Suppose the MacGuys sell somewhere between 0 and 4 computers each week from their store, according to the probability distribution to the right.
- Computers sell for \$4,300 each.
- Analytically compute the mean and standard deviation for weekly demand for computers.
- Analytically compute the mean and standard deviation for weekly revenue.

Probability
Distribution:

Demand	Prob.
0	0.2
1	0.4
2	0.2
3	0.1
4	0.1

- Simulate data for a number of weeks, and compute these same statistics.

Example

- Suppose the MacGuys sell somewhere between 0 and 4 computers each week from their store, according to the probability distribution to the right.
- Computers sell for $\$ 4,300$ each.
- Analytically compute the mean and standard deviation for weekly demand for computers.
- Analytically compute the mean and standard deviation for weekly revenue.

Probability
Distribution:

Demand	Prob.
0	0.2
1	0.4
2	0.2
3	0.1
4	0.1

- Simulate data for a number of weeks, and compute these same statistics.

Example

- Suppose the MacGuys sell somewhere between 0 and 4 computers each week from their store, according to the probability distribution to the right.
- Computers sell for $\$ 4,300$ each.
- Analytically compute the mean and standard deviation for weekly demand for computers.
- Analytically compute the mean and standard deviation for weekly revenue.

Probability
Distribution:

Demand	Prob.
0	0.2
1	0.4
2	0.2
3	0.1
4	0.1

- Simulate data for a number of weeks, and compute these same statistics.

Example

- Suppose the MacGuys sell somewhere between 0 and 4 computers each week from their store, according to the probability distribution to the right.
- Computers sell for $\$ 4,300$ each.
- Analytically compute the mean and standard deviation for weekly demand for computers.
- Analytically compute the mean and standard deviation for weekly revenue.

Probability
Distribution:

Demand	Prob.
0	0.2
1	0.4
2	0.2
3	0.1
4	0.1

- Simulate data for a number of weeks, and compute these same statistics.

Example

- Suppose the MacGuys sell somewhere between 0 and 4 computers each week from their store, according to the probability distribution to the right.
- Computers sell for \$4,300 each.
- Analytically compute the mean and standard deviation for weekly demand for computers.
- Analytically compute the mean and standard deviation for weekly revenue.

Probability
Distribution:

Demand	Prob.
0	0.2
1	0.4
2	0.2
3	0.1
4	0.1

- Simulate data for a number of weeks, and compute these same statistics.

Something More Complicated

- Suppose there is an inventory cost of $\$ 50$ per computer.
- If the company falls short, the company not only fails to make a sale, but is estimated to loose $\$ 500$ in future revenue per computer, due to making a customer unhappy.
- Suppose the company orders 1 computer per week.
- Simulate demand for two years (104 weeks), simulate inventory for each week:
- Simulate revenue, adjusting for $\$ 50$ inventory cost, $\$ 500$ shortage cost.

Something More Complicated

- Suppose there is an inventory cost of $\$ 50$ per computer.
- If the company falls short, the company not only fails to make a sale, but is estimated to loose $\$ 500$ in future revenue per computer, due to making a customer unhappy.
- Suppose the company orders 1 computer per week.
- Simulate demand for two years (104 weeks), simulate inventory for each week:
- Simulate revenue, adjusting for \$50 inventory cost, \$500 shortage cost.
- Suppose there is an inventory cost of $\$ 50$ per computer.
- If the company falls short, the company not only fails to make a sale, but is estimated to loose $\$ 500$ in future revenue per computer, due to making a customer unhappy.
- Suppose the company orders 1 computer per week.
- Simulate demand for two years (104 weeks), simulate inventory for each week:
- Simulate revenue, adjusting for $\$ 50$ inventory cost, $\$ 500$ shortage cost.
- Suppose there is an inventory cost of $\$ 50$ per computer.
- If the company falls short, the company not only fails to make a sale, but is estimated to loose $\$ 500$ in future revenue per computer, due to making a customer unhappy.
- Suppose the company orders 1 computer per week.
- Simulate demand for two years (104 weeks), simulate inventory for each week:

Inventory $_{t}=\max \left(\right.$ Inventory $_{t-1}-$ Demand $\left._{t-1}, 0\right)+1$.

- Simulate revenue, adjusting for $\$ 50$ inventory cost, $\$ 500$ shortage cost.
- Suppose there is an inventory cost of $\$ 50$ per computer.
- If the company falls short, the company not only fails to make a sale, but is estimated to loose $\$ 500$ in future revenue per computer, due to making a customer unhappy.
- Suppose the company orders 1 computer per week.
- Simulate demand for two years (104 weeks), simulate inventory for each week:

$$
\text { Inventory }_{t}=\max \left(\text { Inventory }_{t-1}-\text { Demand }_{t-1}, 0\right)+1
$$

- Simulate revenue, adjusting for $\$ 50$ inventory cost, $\$ 500$ shortage cost.
- Suppose there is an inventory cost of $\$ 50$ per computer.
- If the company falls short, the company not only fails to make a sale, but is estimated to loose $\$ 500$ in future revenue per computer, due to making a customer unhappy.
- Suppose the company orders 1 computer per week.
- Simulate demand for two years (104 weeks), simulate inventory for each week:

$$
\text { Inventory }_{t}=\max \left(\text { Inventory }_{t-1}-\text { Demand }_{t-1}, 0\right)+1
$$

- Simulate revenue, adjusting for $\$ 50$ inventory cost, $\$ 500$ shortage cost.

- Suppose there is an inventory cost of $\$ 50$ per computer.
- If the company falls short, the company not only fails to make a sale, but is estimated to loose $\$ 500$ in future revenue per computer, due to making a customer unhappy.
- Suppose the company orders 1 computer per week.
- Simulate demand for two years (104 weeks), simulate inventory for each week:

$$
\text { Inventory }_{t}=\max \left(\text { Inventory }_{t-1}-\text { Demand }_{t-1}, 0\right)+1
$$

- Simulate revenue, adjusting for $\$ 50$ inventory cost, $\$ 500$ shortage cost.

$$
\begin{aligned}
& \text { Revenue }_{t}=(\$ 4,300) \min \left(\text { Inventory }_{t}, \text { Demand }_{t}\right) \\
& -(\$ 50) \text { Inventory }_{t}-(\$ 500) \max \left(\text { Demand }_{t}-\text { Inventory }_{t}, 0\right)
\end{aligned}
$$

Queuing System Example

- A denim manufacturing facility receives yarn at varying time intervals (according to the probability distribution in the following slide).
- Then it dyes the yarn, which takes varying amounts of time according to the second probability distibution (according to the second probability distribution on the following slide)
- If a batch of yarn arrives at the facility, it is possible it must wait for the previous batch to complete.
- It is possible that facility sits not utilized while it waits for another batch of yarn to arrive.
- Calculate the mean and std dev for the total time in the facility (waiting time + dying time)
- Calculate the mean and std dev for the waiting time.
- Calculate the average number of days per month the facility is idle.

Queuing System Example

- A denim manufacturing facility receives yarn at varying time intervals (according to the probability distribution in the following slide).
- Then it dyes the yarn, which takes varying amounts of time according to the second probability distibution (according to the second probability distribution on the following slide).
- If a batch of yarn arrives at the facility, it is possible it must wait for the previous batch to complete.
- It is possible that facility sits not utilized while it waits for another batch of yarn to arrive.
- Calculate the mean and std dev for the total time in the facility (waiting time + dying time)
- Calculate the mean and std dev for the waiting time.
- Calculate the average number of days per month the facility is idle.

Queuing System Example

- A denim manufacturing facility receives yarn at varying time intervals (according to the probability distribution in the following slide).
- Then it dyes the yarn, which takes varying amounts of time according to the second probability distibution (according to the second probability distribution on the following slide).
- If a batch of yarn arrives at the facility, it is possible it must wait for the previous batch to complete.
- It is possible that facility sits not utilized while it waits for another batch of yarn to arrive.
- Calculate the mean and std dev for the total time in the facility (waiting time + dying time)
- Calculate the mean and std dev for the waiting time.
- Calculate the average number of days ner month the facility is idle.

Queuing System Example

- A denim manufacturing facility receives yarn at varying time intervals (according to the probability distribution in the following slide).
- Then it dyes the yarn, which takes varying amounts of time according to the second probability distibution (according to the second probability distribution on the following slide).
- If a batch of yarn arrives at the facility, it is possible it must wait for the previous batch to complete.
- It is possible that facility sits not utilized while it waits for another batch of yarn to arrive.
- Calculate the mean and std dev for the total time in the facility (waiting time + dying time)
- Calculate the mean and std dev for the waiting time.
- Calculate the average number of days per month the facility is idle.

Queuing System Example

- A denim manufacturing facility receives yarn at varying time intervals (according to the probability distribution in the following slide).
- Then it dyes the yarn, which takes varying amounts of time according to the second probability distibution (according to the second probability distribution on the following slide).
- If a batch of yarn arrives at the facility, it is possible it must wait for the previous batch to complete.
- It is possible that facility sits not utilized while it waits for another batch of yarn to arrive.
- Calculate the mean and std dev for the total time in the facility (waiting time + dying time).
- Calculate the mean and std dev for the waiting time.
- Calculate the average number of days per month the facility is idle.

Queuing System Example

- A denim manufacturing facility receives yarn at varying time intervals (according to the probability distribution in the following slide).
- Then it dyes the yarn, which takes varying amounts of time according to the second probability distibution (according to the second probability distribution on the following slide).
- If a batch of yarn arrives at the facility, it is possible it must wait for the previous batch to complete.
- It is possible that facility sits not utilized while it waits for another batch of yarn to arrive.
- Calculate the mean and std dev for the total time in the facility (waiting time + dying time).
- Calculate the mean and std dev for the waiting time.
- Calculate the average number of days per month the facility is idle.

Queuing System Example

- A denim manufacturing facility receives yarn at varying time intervals (according to the probability distribution in the following slide).
- Then it dyes the yarn, which takes varying amounts of time according to the second probability distibution (according to the second probability distribution on the following slide).
- If a batch of yarn arrives at the facility, it is possible it must wait for the previous batch to complete.
- It is possible that facility sits not utilized while it waits for another batch of yarn to arrive.
- Calculate the mean and std dev for the total time in the facility (waiting time + dying time).
- Calculate the mean and std dev for the waiting time.
- Calculate the average number of days per month the facility is idle.

Queuing System Probability Distributions

Distribution of Arrival Intervals:

Distribution of Dying Times:

Arrival Interval	Probability
1 day	0.2
2 days	0.4
3 days	0.3
4 days	0.1

Dying Time	Probability
0.5 days	0.2
1 day	0.5
2 days	0.3

Queuing System Equations

Compute the following:
(1) Simulate Interval ${ }_{i}$.
(3) Arrival $_{i}=$ Arrival $_{i-1}+$ Interval $_{i}$.
(3) Waiting $_{i}=\max \left(\right.$ Finish $_{i-1}-$ Arrival $\left._{i}, 0\right)$
(9) Idle $_{i}=\max \left(\right.$ Arrival $_{i}-$ Finish $\left._{i-1}, 0\right)$
(3) Simulate Dying ${ }_{i}$
(0) TimeSystem ${ }_{i}=$ Waiting $_{i}+$ Dying $_{i}$
(3) Finish $_{i}=$ Arrival $_{i}+$ TimeSystem $_{i}$

Queuing System Equations

Compute the following:
(1) Simulate Interval ${ }_{i}$.
(2) Arrival $_{i}=$ Arrival $_{i-1}+$ Interval $_{i}$.
(3) Waiting $_{i}=\max \left(\right.$ Finish $_{i-1}-$ Arrival $\left._{i}, 0\right)$
(9) Idle $_{i}=\max \left(\right.$ Arrival $_{i}-$ Finish $\left._{i-1}, 0\right)$
(3) Simulate Dying ${ }_{i}$.
(0) TimeSystem ${ }_{i}=$ Waiting $_{i}+$ Dying $_{i}$
(0) Finish $_{i}=$ Arrival $_{i}+$ TimeSystem $_{i}$

Queuing System Equations

Compute the following:
(1) Simulate Interval ${ }_{i}$.
(2) Arrival $_{i}=$ Arrival $_{i-1}+$ Interval $_{i}$.
(3) Waiting $_{i}=\max \left(\right.$ Finish $_{i-1}-$ Arrival $\left._{i}, 0\right)$
(9) Idle $_{i}=\max \left(\right.$ Arrival $_{i}-$ Finish $\left._{i-1}, 0\right)$
(6) Simulate Dying ${ }_{i}$
(0) TimeSystem ${ }_{i}=$ Waiting $_{i}+$ Dying $_{i}$
(0) Finish $_{i}=$ Arrival $_{i}+$ TimeSystem $_{i}$

Queuing System Equations

Compute the following:
(1) Simulate Interval ${ }_{i}$.
(2) Arrival $_{i}=$ Arrival $_{i-1}+$ Interval $_{i}$.
(3) Waiting $_{i}=\max \left(\right.$ Finish $_{i-1}-$ Arrival $\left._{i}, 0\right)$
(9) Idle $_{i}=\max \left(\right.$ Arrival $_{i}-$ Finish $\left._{i-1}, 0\right)$
(3) Simulate Dying i_{i}
(0) TimeSystem ${ }_{i}=$ Waiting $_{i}+$ Dying $_{i}$
(0) Finish $_{i}=$ Arrival $_{i}+$ TimeSystem $_{i}$

Queuing System Equations

Compute the following:
(1) Simulate Interval ${ }_{i}$.
(2) Arrival $_{i}=$ Arrival $_{i-1}+$ Interval $_{i}$.
(3) Waiting $_{i}=\max \left(\right.$ Finish $_{i-1}-$ Arrival $\left._{i}, 0\right)$
(9) Idle $_{i}=\max \left(\right.$ Arrival $_{i}-$ Finish $\left._{i-1}, 0\right)$
(0) Simulate Dying ${ }_{i}$.
(TimeSystem $_{i}=$ Waiting $_{i}+$ Dying $_{i}$
(0) Finish $_{i}=$ Arrival $_{i}+$ TimeSystem $_{i}$

Queuing System Equations

Compute the following:
(1) Simulate Interval ${ }_{i}$.
(2) Arrival $_{i}=$ Arrival $_{i-1}+$ Interval $_{i}$.
(3) Waiting $_{i}=\max \left(\right.$ Finish $_{i-1}-$ Arrival $\left._{i}, 0\right)$
(9) Idle $_{i}=\max \left(\right.$ Arrival $_{i}-$ Finish $\left._{i-1}, 0\right)$
(6) Simulate Dying ${ }_{i}$.
(0) TimeSystem ${ }_{i}=$ Waiting $_{i}+$ Dying $_{i}$
(0) Finish $_{i}=$ Arrival $_{i}+$ TimeSystem $_{i}$

Queuing System Equations

Compute the following:
(1) Simulate Interval ${ }_{i}$.
(2) Arrival $_{i}=$ Arrival $_{i-1}+$ Interval $_{i}$.
(3) Waiting $_{i}=\max \left(\right.$ Finish $_{i-1}-$ Arrival $\left._{i}, 0\right)$
(9) Idle $_{i}=\max \left(\right.$ Arrival $_{i}-$ Finish $\left._{i-1}, 0\right)$
(6) Simulate Dying ${ }_{i}$.
(0) TimeSystem $_{i}=$ Waiting $_{i}+$ Dying $_{i}$
(1) Finish $_{i}=$ Arrival $_{i}+$ TimeSystem $_{i}$

- End of Chapter 14 (pages 665-666), problems 7 and 8.
- Due Tuesday, November 6, before class.
- Type up answers in a Microsoft Word file, include your Excel file.
- Upload to D2L dropbox.

