Decision Making

BUS 735: Business Decision Making and Research

E

3.0

BUS 735: Business Decision Making and Research Decision Making

Learning Objective	Active Learning Activity
Learn how to simulate proba-	Example problem in Excel.
bility distribution	
Learn how to simulate inven-	Example problem in Excel.
tory systems.	
Learn how to simulate queuing	Example problem in Excel
systems.	
More practice.	Read Chapter 14, Homework
	exercises.
tory systems. Learn how to simulate queuing systems. More practice.	Example problem in Excel Read Chapter 14, Homework exercises.

▲ □ ▶ ▲ 正

문 🕨 문

- **Simulation:** drawing random numbers from a probability distribution.
- Monte Carlo Simulation: Use simulated data to simply compute means, standard deviations, etc.
- More complicated computations can be made based on the simulated data.
 - Create linear combinations of variables.
 - Take ratios!

(4月) (4日) (4日)

- **Simulation:** drawing random numbers from a probability distribution.
- Monte Carlo Simulation: Use simulated data to simply compute means, standard deviations, etc.
- More complicated computations can be made based on the simulated data.
 - Create linear combinations of variables.
 - Take ratios!

- 4 回 ト - 4 回 ト - 4 回 ト

- **Simulation:** drawing random numbers from a probability distribution.
- Monte Carlo Simulation: Use simulated data to simply compute means, standard deviations, etc.
- More complicated computations can be made based on the simulated data.
 - Create linear combinations of variables.
 - Take ratios!

- **Simulation:** drawing random numbers from a probability distribution.
- Monte Carlo Simulation: Use simulated data to simply compute means, standard deviations, etc.
- More complicated computations can be made based on the simulated data.
 - Create linear combinations of variables.
 - Take ratios!

向下 イヨト イヨト

- **Simulation:** drawing random numbers from a probability distribution.
- Monte Carlo Simulation: Use simulated data to simply compute means, standard deviations, etc.
- More complicated computations can be made based on the simulated data.
 - Create linear combinations of variables.
 - Take ratios!

向下 イヨト イヨト

Example

- Suppose the MacGuys sell somewhere between 0 and 4 computers each week from their store, according to the probability distribution to the right.
- Computers sell for \$4,300 each.
- Analytically compute the mean and standard deviation for weekly demand for computers.
- Analytically compute the mean and standard deviation for weekly revenue.
- Simulate data for a number of weeks, and compute these same statistics.

Demand	Prob.
0	0.2
1	0.4
2	0.2
3	0.1
4	0.1

- Suppose the MacGuys sell somewhere between 0 and 4 computers each week from their store, according to the probability distribution to the right.
- Computers sell for \$4,300 each.
- Analytically compute the mean and standard deviation for weekly demand for computers.
- Analytically compute the mean and standard deviation for weekly revenue.
- Simulate data for a number of weeks, and compute these same statistics.

Demand	Prob.
0	0.2
1	0.4
2	0.2
3	0.1
4	0.1

- Suppose the MacGuys sell somewhere between 0 and 4 computers each week from their store, according to the probability distribution to the right.
- Computers sell for \$4,300 each.
- Analytically compute the mean and standard deviation for weekly demand for computers.
- Analytically compute the mean and standard deviation for weekly revenue.
- Simulate data for a number of weeks, and compute these same statistics.

Demand	Prob.
0	0.2
1	0.4
2	0.2
3	0.1
4	0.1

- Suppose the MacGuys sell somewhere between 0 and 4 computers each week from their store, according to the probability distribution to the right.
- Computers sell for \$4,300 each.
- Analytically compute the mean and standard deviation for weekly demand for computers.
- Analytically compute the mean and standard deviation for weekly revenue.
- Simulate data for a number of weeks, and compute these same statistics.

Demand	Prob.
0	0.2
1	0.4
2	0.2
3	0.1
4	0.1

- Suppose the MacGuys sell somewhere between 0 and 4 computers each week from their store, according to the probability distribution to the right.
- Computers sell for \$4,300 each.
- Analytically compute the mean and standard deviation for weekly demand for computers.
- Analytically compute the mean and standard deviation for weekly revenue.
- Simulate data for a number of weeks, and compute these same statistics.

Probability Distribution:

Demand	Prob.
0	0.2
1	0.4
2	0.2
3	0.1
4	0.1

4/8

- Suppose there is an inventory cost of \$50 per computer.
- If the company falls short, the company not only fails to make a sale, but is estimated to loose \$500 in future revenue per computer, due to making a customer unhappy.
- Suppose the company orders 1 computer per week.
- Simulate demand for two years (104 weeks), simulate inventory for each week:

Inventory_t = max(Inventory_{t-1} - Demand_{t-1}, 0) + 1.

• Simulate revenue, adjusting for \$50 inventory cost, \$500 shortage cost.

Revenue_t = (\$4,300) min(Inventory_t, Demand_t) -(\$50) Inventory_t - (\$500) max(Demand_t - Inventory_t, 0)

- 4 同下 4 日下 4 日下

- Suppose there is an inventory cost of \$50 per computer.
- If the company falls short, the company not only fails to make a sale, but is estimated to loose \$500 in future revenue per computer, due to making a customer unhappy.
- Suppose the company orders 1 computer per week.
- Simulate demand for two years (104 weeks), simulate inventory for each week:

Inventory_t = max(Inventory_{t-1} - Demand_{t-1}, 0) + 1.

• Simulate revenue, adjusting for \$50 inventory cost, \$500 shortage cost.

Revenue_t = (\$4,300) min(Inventory_t, Demand_t) -(\$50) Inventory_t - (\$500) max(Demand_t - Inventory_t, 0)

- 4 同下 4 日下 4 日下

- Suppose there is an inventory cost of \$50 per computer.
- If the company falls short, the company not only fails to make a sale, but is estimated to loose \$500 in future revenue per computer, due to making a customer unhappy.
- Suppose the company orders 1 computer per week.
- Simulate demand for two years (104 weeks), simulate inventory for each week:

Inventory_t = max(Inventory_{t-1} - Demand_{t-1}, 0) + 1.

• Simulate revenue, adjusting for \$50 inventory cost, \$500 shortage cost.

Revenue_t = (\$4,300) min(Inventory_t, Demand_t) -(\$50) Inventory_t - (\$500) max(Demand_t - Inventory_t, 0)

- Suppose there is an inventory cost of \$50 per computer.
- If the company falls short, the company not only fails to make a sale, but is estimated to loose \$500 in future revenue per computer, due to making a customer unhappy.
- Suppose the company orders 1 computer per week.
- Simulate demand for two years (104 weeks), simulate inventory for each week:

Inventory_t = max(Inventory_{t-1} - Demand_{t-1}, 0) + 1.

• Simulate revenue, adjusting for \$50 inventory cost, \$500 shortage cost.

Revenue_t = (\$4,300) min(Inventory_t, Demand_t) -(\$50) Inventory_t - (\$500) max(Demand_t - Inventory_t, 0)

・ロト ・回ト ・ヨト ・ヨト

- Suppose there is an inventory cost of \$50 per computer.
- If the company falls short, the company not only fails to make a sale, but is estimated to loose \$500 in future revenue per computer, due to making a customer unhappy.
- Suppose the company orders 1 computer per week.
- Simulate demand for two years (104 weeks), simulate inventory for each week:

 $Inventory_t = max(Inventory_{t-1} - Demand_{t-1}, 0) + 1.$

• Simulate revenue, adjusting for \$50 inventory cost, \$500 shortage cost.

Revenue_t = (\$4,300) min(Inventory_t, Demand_t) -(\$50) Inventory_t - (\$500) max(Demand_t - Inventory_t, 0)

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- Suppose there is an inventory cost of \$50 per computer.
- If the company falls short, the company not only fails to make a sale, but is estimated to loose \$500 in future revenue per computer, due to making a customer unhappy.
- Suppose the company orders 1 computer per week.
- Simulate demand for two years (104 weeks), simulate inventory for each week:

 $Inventory_t = max(Inventory_{t-1} - Demand_{t-1}, 0) + 1.$

• Simulate revenue, adjusting for \$50 inventory cost, \$500 shortage cost.

Revenue_t = (\$4,300) min(Inventory_t, Demand_t) -(\$50) Inventory_t - (\$500) max(Demand_t - Inventory_t, 0)

(ロ) (同) (E) (E) (E)

- Suppose there is an inventory cost of \$50 per computer.
- If the company falls short, the company not only fails to make a sale, but is estimated to loose \$500 in future revenue per computer, due to making a customer unhappy.
- Suppose the company orders 1 computer per week.
- Simulate demand for two years (104 weeks), simulate inventory for each week:

 $Inventory_t = max(Inventory_{t-1} - Demand_{t-1}, 0) + 1.$

• Simulate revenue, adjusting for \$50 inventory cost, \$500 shortage cost.

Revenue_t = (\$4,300) min(Inventory_t, Demand_t) -(\$50) Inventory_t - (\$500) max(Demand_t - Inventory_t, 0)

<ロ> (四) (四) (注) (注) (注) (三)

- A denim manufacturing facility receives yarn at varying time intervals (according to the probability distribution in the following slide).
- Then it dyes the yarn, which takes varying amounts of time according to the second probability distribution (according to the second probability distribution on the following slide).
- If a batch of yarn arrives at the facility, it is possible it must wait for the previous batch to complete.
- It is possible that facility sits not utilized while it waits for another batch of yarn to arrive.
- Calculate the mean and std dev for the total time in the facility (waiting time + dying time).
- Calculate the mean and std dev for the waiting time.
- Calculate the average number of days per month the facility is idle.

- A denim manufacturing facility receives yarn at varying time intervals (according to the probability distribution in the following slide).
- Then it dyes the yarn, which takes varying amounts of time according to the second probability distribution (according to the second probability distribution on the following slide).
- If a batch of yarn arrives at the facility, it is possible it must wait for the previous batch to complete.
- It is possible that facility sits not utilized while it waits for another batch of yarn to arrive.
- Calculate the mean and std dev for the total time in the facility (waiting time + dying time).
- Calculate the mean and std dev for the waiting time.
- Calculate the average number of days per month the facility is idle.

- A denim manufacturing facility receives yarn at varying time intervals (according to the probability distribution in the following slide).
- Then it dyes the yarn, which takes varying amounts of time according to the second probability distribution (according to the second probability distribution on the following slide).
- If a batch of yarn arrives at the facility, it is possible it must wait for the previous batch to complete.
- It is possible that facility sits not utilized while it waits for another batch of yarn to arrive.
- Calculate the mean and std dev for the total time in the facility (waiting time + dying time).
- Calculate the mean and std dev for the waiting time.
- Calculate the average number of days per month the facility is idle.

- A denim manufacturing facility receives yarn at varying time intervals (according to the probability distribution in the following slide).
- Then it dyes the yarn, which takes varying amounts of time according to the second probability distribution (according to the second probability distribution on the following slide).
- If a batch of yarn arrives at the facility, it is possible it must wait for the previous batch to complete.
- It is possible that facility sits not utilized while it waits for another batch of yarn to arrive.
- Calculate the mean and std dev for the total time in the facility (waiting time + dying time).
- Calculate the mean and std dev for the waiting time.
- Calculate the average number of days per month the facility is idle.

- A denim manufacturing facility receives yarn at varying time intervals (according to the probability distribution in the following slide).
- Then it dyes the yarn, which takes varying amounts of time according to the second probability distribution (according to the second probability distribution on the following slide).
- If a batch of yarn arrives at the facility, it is possible it must wait for the previous batch to complete.
- It is possible that facility sits not utilized while it waits for another batch of yarn to arrive.
- Calculate the mean and std dev for the total time in the facility (waiting time + dying time).
- Calculate the mean and std dev for the waiting time.
- Calculate the average number of days per month the facility is idle.

- A denim manufacturing facility receives yarn at varying time intervals (according to the probability distribution in the following slide).
- Then it dyes the yarn, which takes varying amounts of time according to the second probability distribution (according to the second probability distribution on the following slide).
- If a batch of yarn arrives at the facility, it is possible it must wait for the previous batch to complete.
- It is possible that facility sits not utilized while it waits for another batch of yarn to arrive.
- Calculate the mean and std dev for the total time in the facility (waiting time + dying time).
- Calculate the mean and std dev for the waiting time.
- Calculate the average number of days per month the facility is idle.

- A denim manufacturing facility receives yarn at varying time intervals (according to the probability distribution in the following slide).
- Then it dyes the yarn, which takes varying amounts of time according to the second probability distribution (according to the second probability distribution on the following slide).
- If a batch of yarn arrives at the facility, it is possible it must wait for the previous batch to complete.
- It is possible that facility sits not utilized while it waits for another batch of yarn to arrive.
- Calculate the mean and std dev for the total time in the facility (waiting time + dying time).
- Calculate the mean and std dev for the waiting time.
- Calculate the average number of days per month the facility is idle.

Distribution of Arrival Intervals:

Arrival Interval	Probability
1 day	0.2
2 days	0.4
3 days	0.3
4 days	0.1

Distribution of Dying Times:

Dying Time	Probability
0.5 days	0.2
1 day	0.5
2 days	0.3

・ロト ・回ト ・ヨト ・ヨト

Ξ

Simulate Interval_i.

- ② Arrival_i = Arrival_{i-1} + Interval_i.
- Waiting_i = max(Finish_{i-1} Arrival_i, 0)
- $Idle_i = max(Arrival_i Finish_{i-1}, 0)$
- Simulate Dying_i.
- TimeSystem_i = Waiting_i + Dying_i
- **7** Finish_i = Arrival_i + TimeSystem_i

- Simulate Interval_i.
- **2** Arrival_i = Arrival_{i-1} + Interval_i.
- Waiting_i = max(Finish_{i-1} Arrival_i, 0)
- Idle_i = $max(Arrival_i Finish_{i-1}, 0)$
- Simulate Dying_i.
- TimeSystem_i = Waiting_i + Dying_i
- **7** Finish_i = Arrival_i + TimeSystem_i

- Simulate Interval_i.
- 2 Arrival_i = Arrival_{i-1} + Interval_i.
- Waiting_i = $max(Finish_{i-1} Arrival_i, 0)$
- Idle_i = max(Arrival_i Finish_{i-1}, 0)
- Simulate Dying;
- TimeSystem_i = Waiting_i + Dying_i
- Finish_i = Arrival_i + TimeSystem_i

< 🗇 🕨 < 🖻 🕨

- Simulate Interval_i.
- 2 Arrival_i = Arrival_{i-1} + Interval_i.
- Waiting_i = $max(Finish_{i-1} Arrival_i, 0)$

•
$$Idle_i = max(Arrival_i - Finish_{i-1}, 0)$$

- Simulate Dying_i.
- TimeSystem_i = Waiting_i + Dying_i
- Finish_i = Arrival_i + TimeSystem_i

< 🗇 🕨 < 🖻 🕨

- Simulate Interval_i.
- 2 Arrival_i = Arrival_{i-1} + Interval_i.
- Waiting_i = $max(Finish_{i-1} Arrival_i, 0)$
- Idle_i = $max(Arrival_i Finish_{i-1}, 0)$
- Simulate Dying_i.
- TimeSystem_i = Waiting_i + Dying_i
- Finish_i = Arrival_i + TimeSystem_i

- Simulate Interval_i.
- 2 Arrival_i = Arrival_{i-1} + Interval_i.
- Waiting_i = $max(Finish_{i-1} Arrival_i, 0)$

•
$$Idle_i = max(Arrival_i - Finish_{i-1}, 0)$$

- Simulate Dying_i.
- TimeSystem_i = Waiting_i + Dying_i
- Finish_i = Arrival_i + TimeSystem_i

< 🗇 🕨 < 🖻 🕨

- Simulate Interval_i.
- 2 Arrival_i = Arrival_{i-1} + Interval_i.
- Waiting_i = $max(Finish_{i-1} Arrival_i, 0)$

•
$$Idle_i = max(Arrival_i - Finish_{i-1}, 0)$$

- Simulate Dying_i.
- TimeSystem_i = Waiting_i + Dying_i
- Finish_i = Arrival_i + TimeSystem_i

- End of Chapter 14 (pages 665-666), problems 7 and 8.
- Due Tuesday, November 6, before class.
- Type up answers in a Microsoft Word file, include your Excel file.
- Upload to D2L dropbox.