International Comparisons What Causes Growth Labor Productivity Policies to promote growth

Economic Growth

ECO 120: Global Macroeconomics

International Comparisons What Causes Growth Labor Productivity Policies to promote growth

Economic Growth

ECO 120: Global Macroeconomics

- Specific goals:
 - Appreciate the significance for economic growth.
 - Compare patterns of economic growth across countries.
 - Learn what factors affect economic growth.
- Learning objectives:
 - LO3: Evaluate the impact of macroeconomic policies on the long-run growth rate of an open economy.
 - LO5: Compare the US and other countries when discussing measures of unemployment, inflation, output, cyclical fluctuations, and economic growth.

- Specific goals:
 - Appreciate the significance for economic growth.
 - Compare patterns of economic growth across countries.
 - Learn what factors affect economic growth.
- Learning objectives:
 - LO3: Evaluate the impact of macroeconomic policies on the long-run growth rate of an open economy.
 - LO5: Compare the US and other countries when discussing measures of unemployment, inflation, output, cyclical fluctuations, and economic growth.

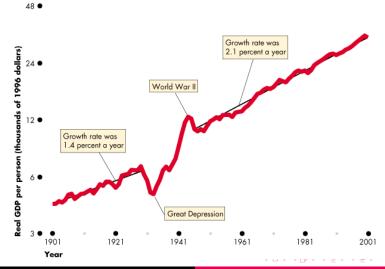
- ullet Before the great depression, average growth rate was 1.4%
- After the great depression, average growth rate was 2.1%
- Real GDP per person in 1900 was approximately \$6,000 (using base year 2009)
- Real GDP per person in 2013 was approximately \$49,800 (base year 2009)
- Can you compute what GDP would be in 2014 if the average growth rate was always 1.4%?
 - Answer: $6000(1+0.014)^{113} = $28,869.56$
- What if the average growth rate was always 2.1%?
 - Answer: $6000(1+0.022)^{100} = $62,814.53$
- Small differences in growth adds up to a lot!

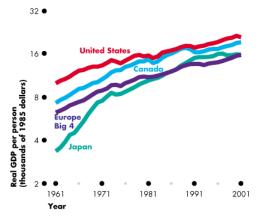
- Before the great depression, average growth rate was 1.4%
- ullet After the great depression, average growth rate was 2.1%
- Real GDP per person in 1900 was approximately \$6,000 (using base year 2009)
- Real GDP per person in 2013 was approximately \$49,800 (base year 2009)
- Can you compute what GDP would be in 2014 if the average growth rate was always 1.4%?
 - Answer: $6000(1+0.014)^{113} = $28,869.56$
- What if the average growth rate was always 2.1%?
 - Answer: $6000(1+0.022)^{100} = $62,814.53$.
- Small differences in growth adds up to a lot!

- Before the great depression, average growth rate was 1.4%
- After the great depression, average growth rate was 2.1%
- Real GDP per person in 1900 was approximately \$6,000 (using base year 2009)
- Real GDP per person in 2013 was approximately \$49,800 (base year 2009)
- Can you compute what GDP would be in 2014 if the average growth rate was always 1.4%?
 - Answer: $6000(1+0.014)^{113} = $28,869.56$
- What if the average growth rate was always 2.1%?
 - Answer: $6000(1+0.022)^{100} = $62,814.53$.
- Small differences in growth adds up to a lot!

- Before the great depression, average growth rate was 1.4%
- After the great depression, average growth rate was 2.1%
- Real GDP per person in 1900 was approximately \$6,000 (using base year 2009)
- Real GDP per person in 2013 was approximately \$49,800 (base year 2009)
- Can you compute what GDP would be in 2014 if the average growth rate was always 1.4%?
 - Answer: $6000(1 + 0.014)^{113} = $28,869.56$
- What if the average growth rate was always 2.1%?
 - Answer: $6000(1 + 0.022)^{100} = $62,814.53$.
- Small differences in growth adds up to a lot!

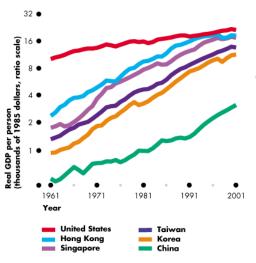
- Before the great depression, average growth rate was 1.4%
- After the great depression, average growth rate was 2.1%
- Real GDP per person in 1900 was approximately \$6,000 (using base year 2009)
- Real GDP per person in 2013 was approximately \$49,800 (base year 2009)
- Can you compute what GDP would be in 2014 if the average growth rate was always 1.4%?
 - Answer: $6000(1+0.014)^{113} = $28,869.56$.
- What if the average growth rate was always 2.1%?
 - Answer: $6000(1+0.022)^{100} = $62,814.53$.
- Small differences in growth adds up to a lot!


- Before the great depression, average growth rate was 1.4%
- After the great depression, average growth rate was 2.1%
- Real GDP per person in 1900 was approximately \$6,000 (using base year 2009)
- Real GDP per person in 2013 was approximately \$49,800 (base year 2009)
- Can you compute what GDP would be in 2014 if the average growth rate was always 1.4%?
 - Answer: $6000(1+0.014)^{113} = $28,869.56$.
- What if the average growth rate was always 2.1%? • Answer: $6000(1 + 0.022)^{100} = $62,814.53$.
- Small differences in growth adds up to a lot!


- Before the great depression, average growth rate was 1.4%
- After the great depression, average growth rate was 2.1%
- Real GDP per person in 1900 was approximately \$6,000 (using base year 2009)
- Real GDP per person in 2013 was approximately \$49,800 (base year 2009)
- Can you compute what GDP would be in 2014 if the average growth rate was always 1.4%?
 - Answer: $6000(1+0.014)^{113} = $28,869.56$.
- What if the average growth rate was always 2.1%?
 - Answer: $6000(1+0.022)^{100} = $62,814.53$.
- Small differences in growth adds up to a lot!

- Before the great depression, average growth rate was 1.4%
- After the great depression, average growth rate was 2.1%
- Real GDP per person in 1900 was approximately \$6,000 (using base year 2009)
- Real GDP per person in 2013 was approximately \$49,800 (base year 2009)
- Can you compute what GDP would be in 2014 if the average growth rate was always 1.4%?
 - Answer: $6000(1+0.014)^{113} = $28,869.56$.
- What if the average growth rate was always 2.1%?
 - Answer: $6000(1+0.022)^{100} = $62,814.53$.
- Small differences in growth adds up to a lot!

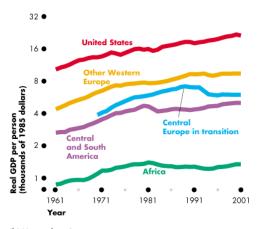
- Before the great depression, average growth rate was 1.4%
- After the great depression, average growth rate was 2.1%
- Real GDP per person in 1900 was approximately \$6,000 (using base year 2009)
- Real GDP per person in 2013 was approximately \$49,800 (base year 2009)
- Can you compute what GDP would be in 2014 if the average growth rate was always 1.4%?
 - Answer: $6000(1+0.014)^{113} = $28,869.56$.
- What if the average growth rate was always 2.1%?
 - Answer: $6000(1+0.022)^{100} = $62,814.53$.
- Small differences in growth adds up to a lot!



(a) Catch-up?

Rich countries, but low rates of growth $\approx 2\%$

After WW2, Japan was lesser-developed, but had a high growth rate


Now Japan is rich and has a low growth rate

Growth rates since 1990:

- Hong Kong $\approx 3\%$
- Singapore $\approx 5\%$
- Taiwan $\approx 5\%$
- Korea $\approx 5\%$
- China $\approx 10\%$

Some Lesser Developed Economies Not Catching Up 7/16

(b) No catch-up?

Saving and investment in new capital

- Savings is important for a sufficient equilibrium level of investment.
- What happens if savings supply is low?
- Higher levels of capital allows for higher levels of production.
- and a higher marginal product of labor.
- Investment in human capital
 - Improved education increases the marginal product of labor.
 - Accumulation of knowledge has increasing returns
- Discovery of new technologies
 - Technological progress drives economic growth in the long run
 - There needs to be incentives to do research and development What does the US do?
 - Patents on new products
 - Fund research and development through grants and state

- Saving and investment in new capital
 - Savings is important for a sufficient equilibrium level of investment.
 - What happens if savings supply is low?
 - Higher levels of capital allows for higher levels of production
 - and a higher marginal product of labor.
- Investment in human capital
 - Improved education increases the marginal product of labor.
 - Accumulation of knowledge has increasing returns
- Discovery of new technologies
 - Technological progress drives economic growth in the long run
 - There needs to be incentives to do research and development What does the US do?

- Saving and investment in new capital
 - Savings is important for a sufficient equilibrium level of investment.
 - What happens if savings supply is low?
 - Higher levels of capital allows for higher levels of production.
 - and a higher marginal product of labor.
- Investment in human capital
 - Improved education increases the marginal product of labor.
 - Accumulation of knowledge has increasing returns
- Discovery of new technologies
 - Technological progress drives economic growth in the long run.
 - There needs to be incentives to do research and development What does the US do?

- Saving and investment in new capital
 - Savings is important for a sufficient equilibrium level of investment.
 - What happens if savings supply is low?
 - Higher levels of capital allows for higher levels of production.
 - and a higher marginal product of labor.
- Investment in human capital
 - Improved education increases the marginal product of labor.
 - Accumulation of knowledge has increasing returns
- Discovery of new technologies
 - Technological progress drives economic growth in the long run
 - There needs to be incentives to do research and development What does the US do?

- Saving and investment in new capital
 - Savings is important for a sufficient equilibrium level of investment.
 - What happens if savings supply is low?
 - Higher levels of capital allows for higher levels of production.
 - and a higher marginal product of labor.
- Investment in human capital
 - Improved education increases the marginal product of labor
 Accumulation of knowledge has increasing returns.
- Discovery of new technologies
 - Technological progress drives economic growth in the long run
 - There needs to be incentives to do research and development What does the US do?

- Saving and investment in new capital
 - Savings is important for a sufficient equilibrium level of investment.
 - What happens if savings supply is low?
 - Higher levels of capital allows for higher levels of production.
 - and a higher marginal product of labor.
- Investment in human capital
 - Improved education increases the marginal product of labor.
 - Accumulation of knowledge has increasing returns.
- Discovery of new technologies
 - Technological progress drives economic growth in the long run
 - There needs to be incentives to do research and development What does the US do?

- Saving and investment in new capital
 - Savings is important for a sufficient equilibrium level of investment.
 - What happens if savings supply is low?
 - Higher levels of capital allows for higher levels of production.
 - and a higher marginal product of labor.
- Investment in human capital
 - Improved education increases the marginal product of labor.
 - Accumulation of knowledge has increasing returns.
- Discovery of new technologies
 - Technological progress drives economic growth in the long run
 - There needs to be incentives to do research and development What does the US do?

- Saving and investment in new capital
 - Savings is important for a sufficient equilibrium level of investment.
 - What happens if savings supply is low?
 - Higher levels of capital allows for higher levels of production.
 - and a higher marginal product of labor.
- Investment in human capital
 - Improved education increases the marginal product of labor.
 - Accumulation of knowledge has increasing returns.
- Discovery of new technologies
 - Technological progress drives economic growth in the long run
 - There needs to be incentives to do research and development What does the US do?

- Saving and investment in new capital
 - Savings is important for a sufficient equilibrium level of investment.
 - What happens if savings supply is low?
 - Higher levels of capital allows for higher levels of production.
 - and a higher marginal product of labor.
- Investment in human capital
 - Improved education increases the marginal product of labor.
 - Accumulation of knowledge has increasing returns.
- Discovery of new technologies
 - Technological progress drives economic growth in the long run.
 - There needs to be incentives to do research and development.
 What does the US do?
 - Patents on new products
 - Fund research and development through grants and state

- Saving and investment in new capital
 - Savings is important for a sufficient equilibrium level of investment.
 - What happens if savings supply is low?
 - Higher levels of capital allows for higher levels of production.
 - and a higher marginal product of labor.
- Investment in human capital
 - Improved education increases the marginal product of labor.
 - Accumulation of knowledge has increasing returns.
- Discovery of new technologies
 - Technological progress drives economic growth in the long run.
 - There needs to be incentives to do research and development.
 What does the US do?
 - Patents on new products
 - Fund research and development through grants and state

- Saving and investment in new capital
 - Savings is important for a sufficient equilibrium level of investment.
 - What happens if savings supply is low?
 - Higher levels of capital allows for higher levels of production.
 - and a higher marginal product of labor.
- Investment in human capital
 - Improved education increases the marginal product of labor.
 - Accumulation of knowledge has increasing returns.
- Discovery of new technologies
 - Technological progress drives economic growth in the long run.
 - There needs to be incentives to do research and development.
 What does the US do?
 - Patents on new products.
 - Fund research and development through grants and state universities.

- Saving and investment in new capital
 - Savings is important for a sufficient equilibrium level of investment.
 - What happens if savings supply is low?
 - Higher levels of capital allows for higher levels of production.
 - and a higher marginal product of labor.
- Investment in human capital
 - Improved education increases the marginal product of labor.
 - Accumulation of knowledge has increasing returns.
- Discovery of new technologies
 - Technological progress drives economic growth in the long run.
 - There needs to be incentives to do research and development.
 What does the US do?
 - Patents on new products.
 - Fund research and development through grants and state universities.

- Saving and investment in new capital
 - Savings is important for a sufficient equilibrium level of investment.
 - What happens if savings supply is low?
 - Higher levels of capital allows for higher levels of production.
 - and a higher marginal product of labor.
- Investment in human capital
 - Improved education increases the marginal product of labor.
 - Accumulation of knowledge has increasing returns.
- Discovery of new technologies
 - Technological progress drives economic growth in the long run.
 - There needs to be incentives to do research and development.
 What does the US do?
 - Patents on new products.
 - Fund research and development through grants and state universities.

Markets

- Enable buyers and sellers to meet.
- Convey information through price.

Property rights

- Creates a profit incentive
- Intellectual property rights gives incentive for research and development

Monetary exchange

- Facilitates exchange
- Eliminates need for a "double coincidence of wants"

- Markets
 - Enable buyers and sellers to meet.
 - Convey information through price.
- Property rights
 - Creates a profit incentive
 - Intellectual property rights gives incentive for research and development
- Monetary exchange
 - Facilitates exchange
 - Eliminates need for a "double coincidence of wants"

- Markets
 - Enable buyers and sellers to meet.
 - Convey information through price.
- Property rights
 - Creates a profit incentive
 - Intellectual property rights gives incentive for research and development
- Monetary exchange
 - Facilitates exchange
 - Eliminates need for a "double coincidence of wants"

- Markets
 - Enable buyers and sellers to meet.
 - Convey information through price.
- Property rights
 - Creates a profit incentive.
 - Intellectual property rights gives incentive for research and development
- Monetary exchange
 - Facilitates exchange
 - Eliminates need for a "double coincidence of wants"

- Markets
 - Enable buyers and sellers to meet.
 - Convey information through price.
- Property rights
 - Creates a profit incentive.
 - Intellectual property rights gives incentive for research and development
- Monetary exchange
 - Facilitates exchange
 - Eliminates need for a "double coincidence of wants"

- Markets
 - Enable buyers and sellers to meet.
 - Convey information through price.
- Property rights
 - Creates a profit incentive.
 - Intellectual property rights gives incentive for research and development
- Monetary exchange
 - Facilitates exchange
 - Eliminates need for a "double coincidence of wants"

Preconditions for these incentives

- Markets
 - Enable buyers and sellers to meet.
 - Convey information through price.
- Property rights
 - Creates a profit incentive.
 - Intellectual property rights gives incentive for research and development
- Monetary exchange
 - Facilitates exchange.
 - Eliminates need for a "double coincidence of wants".

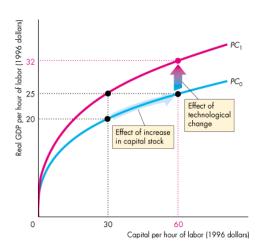
- Markets
 - Enable buyers and sellers to meet.
 - Convey information through price.
- Property rights
 - Creates a profit incentive.
 - Intellectual property rights gives incentive for research and development
- Monetary exchange
 - Facilitates exchange.
 - Eliminates need for a "double coincidence of wants"

- Markets
 - Enable buyers and sellers to meet.
 - Convey information through price.
- Property rights
 - Creates a profit incentive.
 - Intellectual property rights gives incentive for research and development
- Monetary exchange
 - Facilitates exchange.
 - Eliminates need for a "double coincidence of wants".

- Labor productivity curve: long-run economic growth model that illustrates how much output per person a country can enjoy with given levels of capital per person.
- Labor productivity is real GDP per hour of labor.

Labor productivity
$$=\frac{\text{Real GDP}}{\text{Aggregate labor hours}}$$

- Labor productivity curve: long-run economic growth model that illustrates how much output per person a country can enjoy with given levels of capital per person.
- Labor productivity is real GDP per hour of labor.


$${\sf Labor\ productivity\ } = \frac{{\sf Real\ GDP}}{{\sf Aggregate\ labor\ hours}}$$

- Think of labor productivity curve as a production function, in per-capita terms.
- Real GDP per unit of labor increases as you increase the amount of capital.
- But at a decreasing rate. Due to diminishing marginal product of capital.

- Think of labor productivity curve as a production function, in per-capita terms.
- Real GDP per unit of labor increases as you increase the amount of capital.
- But at a decreasing rate. Due to diminishing marginal product of capital.

- Think of labor productivity curve as a production function, in per-capita terms.
- Real GDP per unit of labor increases as you increase the amount of capital.
- But at a decreasing rate. Due to diminishing marginal product of capital.

How labor productivity grows

- For given levels of capital stock per worker, curve shows output per worker.
- Increases in capital correspond to movements along the curve.
- Increases in technology or human capital shift the curve.

- For given levels of capital stock per worker, curve shows output per worker.
- Increases in capital correspond to movements along the curve.
- Increases in technology or human capital shift the curve.

- For given levels of capital stock per worker, curve shows output per worker.
- Increases in capital correspond to movements along the curve.
- Increases in technology or human capital shift the curve.

- Diminishing returns explains catch-up theory.
 - ullet Lesser-developed countries have low levels of capital o high return to investing in new capital.
 - Developed countries (like the U.S.) have high levels of capital
 → low return to investing in new capital.
- Not all countries catch up. Preconditions for growth do not exist.
 - Poorly developed goods and services markets, financia markets.
 - Corruption and war threaten property rights
 - Inflation out of control

- Diminishing returns explains catch-up theory.
 - \bullet Lesser-developed countries have low levels of capital \to high return to investing in new capital.
 - Developed countries (like the U.S.) have high levels of capital
 → low return to investing in new capital.
- Not all countries catch up. Preconditions for growth do not exist.
 - Poorly developed goods and services markets, financia markets.
 - Corruption and war threaten property rights
 - Inflation out of control.

- Diminishing returns explains catch-up theory.
 - ullet Lesser-developed countries have low levels of capital o high return to investing in new capital.
 - Developed countries (like the U.S.) have high levels of capital
 → low return to investing in new capital.
- Not all countries catch up. Preconditions for growth do not exist.
 - Poorly developed goods and services markets, financial markets.
 - Corruption and war threaten property rights
 - Inflation out of control.

- Diminishing returns explains catch-up theory.
 - ullet Lesser-developed countries have low levels of capital o high return to investing in new capital.
 - Developed countries (like the U.S.) have high levels of capital
 → low return to investing in new capital.
- Not all countries catch up. Preconditions for growth do not exist.
 - Poorly developed goods and services markets, financial markets.
 - Corruption and war threaten property rights.
 - Inflation out of control.

- Diminishing returns explains catch-up theory.
 - ullet Lesser-developed countries have low levels of capital o high return to investing in new capital.
 - Developed countries (like the U.S.) have high levels of capital
 → low return to investing in new capital.
- Not all countries catch up. Preconditions for growth do not exist.
 - Poorly developed goods and services markets, financial markets.
 - Corruption and war threaten property rights.
 - Inflation out of control.

- Diminishing returns explains catch-up theory.
 - ullet Lesser-developed countries have low levels of capital o high return to investing in new capital.
 - Developed countries (like the U.S.) have high levels of capital
 → low return to investing in new capital.
- Not all countries catch up. Preconditions for growth do not exist.
 - Poorly developed goods and services markets, financial markets.
 - Corruption and war threaten property rights.
 - Inflation out of control.

- Diminishing returns explains catch-up theory.
 - ullet Lesser-developed countries have low levels of capital o high return to investing in new capital.
 - Developed countries (like the U.S.) have high levels of capital
 → low return to investing in new capital.
- Not all countries catch up. Preconditions for growth do not exist.
 - Poorly developed goods and services markets, financial markets.
 - Corruption and war threaten property rights.
 - Inflation out of control.

- Stimulate savings. How?
 - Tax incentives: IRA accounts. Tax on consumption.
 - Tax on capital gains reduces savings incentive.
- Stimulate research and development.
 - Patents, research grants.
- Encourage international trade.
 - Fastest growing nations today are those with the fastest growing imports and exports.
 - Achieve gains from trade
 - Invites foreign direct investment: global businesses create operations in new countries, invest in capital.
- Improve the quality of education.

- Stimulate savings. How?
 - Tax incentives: IRA accounts. Tax on consumption.
 - Tax on capital gains reduces savings incentive.
- Stimulate research and development.
 - Patents, research grants.
- Encourage international trade.
 - Fastest growing nations today are those with the fastest growing imports and exports.
 - Achieve gains from trade
 - Invites foreign direct investment: global businesses create operations in new countries, invest in capital.
- Improve the quality of education.

- Stimulate savings. How?
 - Tax incentives: IRA accounts. Tax on consumption.
 - Tax on capital gains reduces savings incentive.
- Stimulate research and development.
 - Patents, research grants.
- Encourage international trade.
 - Fastest growing nations today are those with the fastest growing imports and exports.
 - Achieve gains from trade
 - Invites foreign direct investment: global businesses create operations in new countries, invest in capital.
- Improve the quality of education.

- Stimulate savings. How?
 - Tax incentives: IRA accounts. Tax on consumption.
 - Tax on capital gains reduces savings incentive.
- Stimulate research and development.
 - Patents, research grants.
- Encourage international trade.
 - Fastest growing nations today are those with the fastest growing imports and exports.
 - Achieve gains from trade
 - Invites foreign direct investment: global businesses create operations in new countries, invest in capital.
- Improve the quality of education.

- Stimulate savings. How?
 - Tax incentives: IRA accounts. Tax on consumption.
 - Tax on capital gains reduces savings incentive.
- Stimulate research and development.
 - Patents, research grants.
- Encourage international trade.
 - Fastest growing nations today are those with the fastest growing imports and exports.
 - Achieve gains from trade
 - Invites foreign direct investment: global businesses create operations in new countries, invest in capital.
- Improve the quality of education.

- Stimulate savings. How?
 - Tax incentives: IRA accounts. Tax on consumption.
 - Tax on capital gains reduces savings incentive.
- Stimulate research and development.
 - Patents, research grants.
- Encourage international trade.
 - Fastest growing nations today are those with the fastest growing imports and exports.
 - Achieve gains from trade.
 - Invites foreign direct investment: global businesses create operations in new countries, invest in capital.
- Improve the quality of education.

- Stimulate savings. How?
 - Tax incentives: IRA accounts. Tax on consumption.
 - Tax on capital gains reduces savings incentive.
- Stimulate research and development.
 - Patents, research grants.
- Encourage international trade.
 - Fastest growing nations today are those with the fastest growing imports and exports.
 - Achieve gains from trade.
 - Invites foreign direct investment: global businesses create operations in new countries, invest in capital.
- Improve the quality of education.

- Stimulate savings. How?
 - Tax incentives: IRA accounts. Tax on consumption.
 - Tax on capital gains reduces savings incentive.
- Stimulate research and development.
 - Patents, research grants.
- Encourage international trade.
 - Fastest growing nations today are those with the fastest growing imports and exports.
 - Achieve gains from trade.
 - Invites foreign direct investment: global businesses create operations in new countries, invest in capital.
- Improve the quality of education.

- Stimulate savings. How?
 - Tax incentives: IRA accounts. Tax on consumption.
 - Tax on capital gains reduces savings incentive.
- Stimulate research and development.
 - Patents, research grants.
- Encourage international trade.
 - Fastest growing nations today are those with the fastest growing imports and exports.
 - Achieve gains from trade.
 - Invites foreign direct investment: global businesses create operations in new countries, invest in capital.
- Improve the quality of education.

- Stimulate savings. How?
 - Tax incentives: IRA accounts. Tax on consumption.
 - Tax on capital gains reduces savings incentive.
- Stimulate research and development.
 - Patents, research grants.
- Encourage international trade.
 - Fastest growing nations today are those with the fastest growing imports and exports.
 - Achieve gains from trade.
 - Invites foreign direct investment: global businesses create operations in new countries, invest in capital.
- Improve the quality of education.

- What is one (stupid) way to achieve a really high level of economic growth?
 - Increase saving to 100%
 - This would lead to high levels of investment and high levels of growth.
 - But we wouldn't consume anything. That's no fun.
- Goal: Maximize the sustainable level of consumption.

- What is one (stupid) way to achieve a really high level of economic growth?
 - Increase saving to 100%
 - This would lead to high levels of investment and high levels of growth.
 - But we wouldn't consume anything. That's no fun.
- Goal: Maximize the sustainable level of consumption.

- What is one (stupid) way to achieve a really high level of economic growth?
 - Increase saving to 100%
 - This would lead to high levels of investment and high levels of growth.
 - But we wouldn't consume anything. That's no fun.
- Goal: Maximize the sustainable level of consumption.

- What is one (stupid) way to achieve a really high level of economic growth?
 - Increase saving to 100%
 - This would lead to high levels of investment and high levels of growth.
 - But we wouldn't consume anything. That's no fun.
- Goal: Maximize the sustainable level of consumption.

- What is one (stupid) way to achieve a really high level of economic growth?
 - Increase saving to 100%
 - This would lead to high levels of investment and high levels of growth.
 - But we wouldn't consume anything. That's no fun.
- Goal: Maximize the sustainable level of consumption.