
Introduction to Multiple Regression Analysis

Multiple regression analysis extends simple bivariate regression analysis with the inclusion of more than
one explanatory variable.

The procedure is used to determine how one or more explanatory variables influence an outcome variable,
while holding all other explanatory variables fixed.

1. Example: Monthly Earnings and Years of Education

The code below downloads a CSV file that includes data from 1980 for 935 individuals on variables including
their total monthly earnings (MonthlyEarnings) and a number of variables that could influence income,
including each person’s IQ (IQ), a measure of knowledge of their job (Knowledge), years of education
(YearsEdu), years experience (YearsExperience), and years at current job (Tenure).

download.file(
url="http://murraylax.org/datasets/wage2.csv",
dest="wage2.csv")

wages <- read.csv("wage2.csv");

Suppose we wish to estimate a linear multiple regression with the above five variables as explanatory variables.
The population regression equation has the form,

yi = β0 + β1x1,i + β2x2,i + ...+ βkxk,i + εi,

where k = 5 is the number of explanatory variables. The sample regression equation is therefore given by,

yi = b0 + b1x1,i + b2x2,i + ...+ bkxk,i + ei,

We can use the lm() function to estimate the regression. In the code below we call lm() with a single
parameter that is a formula specifying how the outcome variable, MonthlyEarnings depends linearly on the
seven explanatory variables. The function lm() produces a large list of output, which we assign to an object
we name lmwages. We call the summary() function next to display the coefficient estimates to the screen.

lmwages <- lm(wages$MonthlyEarnings
~ wages$IQ + wages$Knowledge + wages$YearsEdu
+ wages$YearsExperience + wages$Tenure)

summary(lmwages)

##
## Call:
## lm(formula = wages$MonthlyEarnings ~ wages$IQ + wages$Knowledge +
## wages$YearsEdu + wages$YearsExperience + wages$Tenure)
##
## Residuals:
## Min 1Q Median 3Q Max
## -826.33 -243.85 -44.83 180.83 2253.35
##
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## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -531.0392 115.0513 -4.616 4.47e-06 ***
## wages$IQ 3.6966 0.9651 3.830 0.000137 ***
## wages$Knowledge 8.2703 1.8273 4.526 6.79e-06 ***
## wages$YearsEdu 47.2698 7.2980 6.477 1.51e-10 ***
## wages$YearsExperience 11.8589 3.2494 3.650 0.000277 ***
## wages$Tenure 6.2465 2.4565 2.543 0.011156 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 365.4 on 929 degrees of freedom
## Multiple R-squared: 0.1878, Adjusted R-squared: 0.1834
## F-statistic: 42.97 on 5 and 929 DF, p-value: < 2.2e-16

The results indicate the best fitting line is given by,

ŷi = −531.0 + 3.7xIQ,i + 8.3xKnowledge,i + 47.3xEdu,i + 11.9xExp,i + 6.2xT enure,i.

2. Omitted Variable Bias

A multiple regression is even useful when one is only interested in the impact of one of the explanatory
variables. The reason is that the regression analysis holds constant the effects of the other variables.

Suppose, for example, that you are primarily interested in estimating the impact of education on monthly
earnings. Suppose you just estimated the following bivariate regression of education on earnings:

yi = β0 + β1xEdu,i + εi

The following call to lm() and summary() produce the estimates for the simple, bivariate model:

lmwages_bivariate <- lm(wages$MonthlyEarnings ~ wages$YearsEdu)
summary(lmwages_bivariate)

##
## Call:
## lm(formula = wages$MonthlyEarnings ~ wages$YearsEdu)
##
## Residuals:
## Min 1Q Median 3Q Max
## -877.38 -268.63 -38.38 207.05 2148.26
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 146.952 77.715 1.891 0.0589 .
## wages$YearsEdu 60.214 5.695 10.573 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 382.3 on 933 degrees of freedom
## Multiple R-squared: 0.107, Adjusted R-squared: 0.106
## F-statistic: 111.8 on 1 and 933 DF, p-value: < 2.2e-16
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The bivariate regression predicts that each year of education is associated with an increase in monthly earnings
of $60.21, while the multiple regression above predicted that each year of education is associated with an
increase in monthly earnings of only $47.27.

The bivariate regression estimate is a biased estimate of the degree to which education affects monthly
earnings, because it suffers from omitted variable bias. This is when there are possible variables that are
not included in the regression which influence both the explanatory variable and the outcome variable. When
the variable is omitted from the regression, the regression is not able to hold that affect constant.

On such omitted variable in the bivariate regression is cognitive ability. People with higher cognitive ability
are likely to perform better in their careers and earn more income. This is true both for people who get high
levels of education and low levels of education. It happens that people with higher cognitive ability receive
higher levels of education on average. When measures of cognitive ability are omitted from the regression,
the regression incorrectly attributes the full amount of the higher salaries to higher levels of education, when
at least part of this should be attributed to higher cognitive ability.

The multiple regression includes multiple measures of cognitive ability, including IQ and job knowledge. When
these measures of cognitive ability are held fixed, and only a marginal increase in education is considered, the
estimated impact of education on monthly earnings is $47.27.

Suppose IQ were to be removed from the regression. Call this regression a restricted regression, and let br
Edu

denote the regression coefficient from the restricted regression. We know that the restricted regression is
susceptible to omitted variable bias. Let bEdu and bIQ denote the regression coefficients from the unrestricted
multiple regression that includes IQ. It can be shown that the estimated coefficient on the restricted regression
is given by,

br
Edu = bEdu + bIQ(dIQ,Edu + dIQ,Knowledge + dIQ,Y earsExp + dIQ,T enure)

where dEdu,j is the regression coefficient on the jth variable from a regression with the omitted variable as
the outcome variable and all the remaining explanatory variables. The first term in the above equation is the
coefficient on the unrestricted regression. All the other terms in the equation add up to the bias created by
omitting the variable. The larger are the values for dEdu,j , the more correlated the omitted variable is to the
existing explanatory variables, the larger will be the bias. Also, the smaller is bIQ, the less important is the
omitted variable in the regression in the first place, the smaller will be the size of the bias.
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