
Tests of Linear Restrictions

1. Linear Restricted in Regression Models

In this tutorial, we consider tests on general linear restrictions on regression coefficients.

In other tutorials, we examine some specific tests of linear restrictions, including:

1. F-test for regression fit: A joint f-test on regression coefficients for all the explanatory variables. The
hypotheses are:

H0 : β1 = 0; β2 = 0; β3 = 0; ....;βk = 0
HA : At least one βj 6= 0

This is a test with k linear restrictions, all of which are exclusion restrictions.

2. F-test for a subset of regression coefficients: A joint f-test on exclusion restrictions for a subset of
regression coefficients. For example, suppose we jointly consider variables x2 and x3. The hypotheses
are:

H0 : β2 = 0; β3 = 0
HA : At least one of β2 6= 0 and/or β3 6= 0

The p-value for the F-test for regression fit is included in the summary regression output in R.

For both of the above tests, the null hypothesis restricts the regression model and the alternative hypothesis
is the general unrestricted regression. Both of these tests involve two regressions where one is a restricted
test is nested in the unrestricted test. Whenever one has nested regression models and wishes to compare the
explanatory power of the unrestricted model versus the restricted model, the following F-test applies:

F = (SSRr − SSRu)/q
SSRu/(n− k − 1)

where q is equal to the number of restrictions, SSRr is the residual sum of squares from the restricted
regression model, SSRu is the residual sum of squares from the unrestricted model, n is the sample size, and
k is the number of explanatory variables in the unrestricted model.

2. General Linear Restrictions

2.1 Example: Regression coefficients equal to each other

Suppose we have a regression model with two explanatory variables and we want to test the hypothesis
whether the two regression coefficients are equal to each other or not:

H0 : β1 = β2

H1 : β1 6= β2

The unrestricted regression model takes the form:

yi = β0 + β1x1,i + β2x2,i + εi

It can be estimated in R with a call to lm() of the form:
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unres_lm <- lm(y ~ x1 + x2)

The restricted model takes the form,

yi = β0 + β1x1,i + β1x2,i + εi

where we substituted β1 in for β2. We combine the terms with like coefficients:

yi = β0 + β1(x1,1 + x2,i) + εi

This restricted regression can be estimated with a call to lm() of the form:

res_lm <- lm(y ~ I(x1 + x2))

where the call to the function I() tells lm() to treat the sum x1 + x2 as a single variable, thereby forcing a
single, identical, coefficient on each of x1 and x2.

2.2 Example: Coefficients proportional to one another

Suppose again we have a regression model with two explanatory variables, but we are interested in whether
one coefficient is twice the magnitude of another coefficient. The null and alternative hypotheses are:

H0 : β1 = 2β2

H1 : β1 6= 2β2

The unrestricted regression takes the same form as the example above. The restricted regression can be
written in the form,

yi = β0 + 2β2x1,i + β2x2,i + εi

where 2β2 was substituted in place of β1. The restricted regression can be estimated with a call to lm() of
the form,

res_lm <- lm(y ~ I(2*x1 + x2))

where again the call to I() is used to combine variables x1 and x2 to a single variable that is consistent with
our restriction.

2.3 F-test for linear restrictions

The F-test will determine whether the unrestricted regression has significantly more explanatory power than
the restricted regression. If so, the test will be statistically significant, and the conclusion will be that the
restrictions do not hold as described in the null hypothesis. The following call to anova() generally compares
two nested regression models and performs the f-test:

anova(unres_lm, res_lm)
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3. Example: Monthly Earnings and Years of Education

Let us examine a data set that explores the relationship between total monthly earnings (MonthlyEarnings)
and a number of factors that may influence monthly earnings including including each person’s IQ
(IQ), a measure of knowledge of their job (Knowledge), years of education (YearsEdu), years experience
(YearsExperience), years at current job (Tenure), mother’s education (MomEdu), and father’s education
(DadEdu).

The code below downloads a CSV file that includes data on the above variables from 1980 for 935 individuals
and assigns it to a data set that we name wages.

wages <- read.csv("http://murraylax.org/datasets/wage2.csv");

The following call to lm() estimates an unrestricted multiple regression predicting monthly earnings based
on the seven explanatory variables given above.

lm_unres <- lm(wages$MonthlyEarnings
~ wages$IQ + wages$Knowledge + wages$YearsEdu
+ wages$YearsExperience + wages$Tenure
+ as.numeric(wages$MomEdu) + as.numeric(wages$DadEdu))

The as.numeric() calls around mothers’ education and fathers’ education were necessary as R would
otherwise interpret these variables as categorical variables because of how the data was coded.

3.1 Regression coefficients equal to each other

Let us test the hypothesis that a mother’s number of years of education has the same influence on monthly
earnings as a father’s number of years of education. The null and alternative hypotheses are:

H0 : βMomEdu = βDadEdu

H1 : βMomEdu 6= βDadEdu

The restricted regression is estimated with the following call to lm():

lm_res <- lm(wages$MonthlyEarnings
~ wages$IQ + wages$Knowledge + wages$YearsEdu
+ wages$YearsExperience + wages$Tenure
+ I( as.numeric(wages$MomEdu) + as.numeric(wages$DadEdu) ) )

We compare the relative explanatory power of the restricted and unrestricted regressions with the followin
call to anova(),

anova(lm_unres, lm_res)

## Analysis of Variance Table
##
## Model 1: wages$MonthlyEarnings ~ wages$IQ + wages$Knowledge + wages$YearsEdu +
## wages$YearsExperience + wages$Tenure + as.numeric(wages$MomEdu) +
## as.numeric(wages$DadEdu)
## Model 2: wages$MonthlyEarnings ~ wages$IQ + wages$Knowledge + wages$YearsEdu +
## wages$YearsExperience + wages$Tenure + I(as.numeric(wages$MomEdu) +
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## as.numeric(wages$DadEdu))
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 927 123432640
## 2 928 123518160 -1 -85520 0.6423 0.4231

The p-value to the F-test is 0.4231. This far exceeds a signficance level of 0.05, so we fail to reject the null
hypothesis. We fail to find statistical evidence that the coefficients for mothers’ education is different from
fathers’ education.

3.2 Regression coefficients proportional to each other

Let us examine the unrestricted coefficient estimates:

summary(lm_unres)

##
## Call:
## lm(formula = wages$MonthlyEarnings ~ wages$IQ + wages$Knowledge +
## wages$YearsEdu + wages$YearsExperience + wages$Tenure + as.numeric(wages$MomEdu) +
## as.numeric(wages$DadEdu))
##
## Residuals:
## Min 1Q Median 3Q Max
## -850.67 -235.04 -46.71 189.00 2235.79
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -467.194 118.967 -3.927 9.24e-05 ***
## wages$IQ 3.609 0.965 3.739 0.000196 ***
## wages$Knowledge 8.002 1.829 4.374 1.36e-05 ***
## wages$YearsEdu 46.778 7.292 6.415 2.24e-10 ***
## wages$YearsExperience 12.077 3.247 3.719 0.000212 ***
## wages$Tenure 6.589 2.460 2.678 0.007534 **
## as.numeric(wages$MomEdu) -3.693 2.032 -1.817 0.069495 .
## as.numeric(wages$DadEdu) -1.189 1.925 -0.618 0.537007
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 364.9 on 927 degrees of freedom
## Multiple R-squared: 0.1918, Adjusted R-squared: 0.1856
## F-statistic: 31.42 on 7 and 927 DF, p-value: < 2.2e-16

The return to monthly income from an additional year of education is $46.78. This appears to be more than
double the effect of experience ($12.08) and tenure ($6.59) combined. Let us see if there is statistical evidence
for such a claim. The f-test is only a two-sided test, so we test the hypotheses:

H0 : βY earsEdu = 2(βY earsExperience + βY earsT enure)

H1 : βY earsEdu 6= 2(βY earsExperience + βY earsT enure)

Substituting the restrictions in the null hypothesis into the model, and combining like coefficients, yields a
linear model of the form,
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lm_res <- lm(wages$MonthlyEarnings
~ wages$IQ + wages$Knowledge
+ I( wages$YearsExperience + 2*wages$YearsEdu )
+ I( wages$Tenure + 2*wages$YearsEdu )
+ as.numeric(wages$MomEdu) + as.numeric(wages$DadEdu))

Finally we call anova() to compare the restricted and unrestricted model.

anova(lm_res, lm_unres)

## Analysis of Variance Table
##
## Model 1: wages$MonthlyEarnings ~ wages$IQ + wages$Knowledge + I(wages$YearsExperience +
## 2 * wages$YearsEdu) + I(wages$Tenure + 2 * wages$YearsEdu) +
## as.numeric(wages$MomEdu) + as.numeric(wages$DadEdu)
## Model 2: wages$MonthlyEarnings ~ wages$IQ + wages$Knowledge + wages$YearsEdu +
## wages$YearsExperience + wages$Tenure + as.numeric(wages$MomEdu) +
## as.numeric(wages$DadEdu)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 928 123616450
## 2 927 123432640 1 183811 1.3805 0.2403

The p-value is equal to 0.2403. We fail to reject the null hypothesis, so we fail to find statistical evidence that
the return to education on monthly earnings is different than twice the combined impact from experience and
tenure.
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