
Learning and Judgment Shocks in U.S. Business Cycles∗

James Murray

Department of Economics

University of Wisconsin - La Crosse†

March 2, 2011

Abstract

This paper examines the role of judgment shocks in combination with other struc-

tural shocks in explaining post-war economic volatility within the context of a New

Keynesian model. Agents form expectations using constant gain learning then aug-

ment these forecasts with judgment. These judgments may be interpreted as a reaction

to current news stories or policy announcements that would in�uence people's expec-

tations. I allow for the possibility that these judgments be informatively based on

information about structural shocks, but judgment itself may also be subject to its

own stochastic shocks. I estimate a standard New Keynesian model that includes these

shocks using Bayesian simulation methods. To aid in identifying expectational shocks

from other structural shocks I include data on professional forecasts along with data

on output gap, in�ation, and interest rates. I �nd judgment is largely not informed by

macroeconomic fundamentals; most of the variability in judgment is explained by its

own stochastic shocks. Impulse response functions from the estimated model illustrate

how shocks to judgment destabilize the economy and explain business cycle �uctuations.
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1 Introduction

Rational expectations with full information about quantities of relevant state variables and

stochastic shocks is the most common assumption among research using models of the

macroeconomy. The assumption makes solving, evaluating, and estimating macroeconomic

models possible with standard tools (albeit, still rather sophisticated), but the informational

requirements and information processing requirements behind the assumption are rather ex-

treme. Least squares learning is a type of non-rational, adaptive expectations that attempts

to use more realistic forecasting methods within the context of macroeconomic models to

understand macroeconomic dynamics. In such a framework, economic agents gather past

data and use simple least squares time series techniques to form their expectations for future

outcomes before making forward looking decisions (a feasible and rather simple statistical

exercise).

One drawback of least squares learning is that expectations are based only on collections

of past data that are passed through some statistical procedure. Forward looking decisions

might also be well guided by relevant current events that have not yet made themselves evi-

dent in historical data. Examples of such events include the passing of a new law, a natural

disaster, a change in political landscape, a change in international trade patterns, or news

of a recent technological development, just to name a few. As soon as such events are made

known through the media, optimizing economic agents would do well to immediately change

their expectations and decisions accordingly. One could argue that rational expectations

captures this realistic component of expectations formation that learning does not. Typi-

cally in dynamic stochastic general equilibrium (DSGE) models with rational expectations,

the values for current stochastic shocks are known before expectations are made. We can

interpret the quantities for these stochastic shocks as precisely measured impacts the above

events on the macroeconomy.

It might also happen that current events are misinterpreted, the quanti�ed impact is

misjudged, or that judgment is otherwise misinformed and not based on actual events. One

example of an exaggerated news story in recent U.S. history might be the Y2K computer
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bug widely discussed in the late 1990s. The September 11, 2001, terrorist attacks may be

an example of a very real event, but whose implications to economic activity may have been

overestimated. Rational expectations cannot account for such misinterpretations of news of

this type.

Judgment based on information in the news that is impractical or impossible to quantify

may therefore bene�t optimal decision making, be detrimental, or more probably a combi-

nation of both. I examine within the context of a standard stochastic New Keynesian model

expectations that are formed by least squares learning forecasts and are then augmented

by judgment. The least squares forecasts incorporates historical data on the output gap,

in�ation rate, and the federal funds rate, data that can be readily obtained and which are

informative for expectations within the context of the New Keynesian model. If expectations

were rational and agents had full information, they would also use current realizations of

structural shocks in forming expectations. In the learning environment with judgment, val-

ues for structural shocks cannot be obtained or estimated, but judgments based on news and

current events may incorporate some of this information. Judgment may also be subject to

its own stochastic shocks that are independent to all other shocks and state variables. This

stochastic component of judgment can be viewed as the detrimental component to using

judgment; shocks that are unrelated to economic fundamentals a�ect agents expectations

and forward looking decisions. One of the contributions of this paper is to provide an es-

timate for the degree to which judgment has in�uenced expectations in the post-war U.S.

monetary economy, and how much of this judgment is informative (that is, related to cur-

rent realizations of structural shocks) and how much is disruptive (independent of structural

shocks). I further illustrate the in�uence judgment shocks have had on the dynamics of

in�ation, output, and interest rates in U.S. history, along with traditional supply, demand,

and monetary policy shocks.

Before moving forward, it is prudent to de�ne the following terms used in this paper that

I give precise meanings to, perhaps using these somewhat di�erently than other papers in

the literature:
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Expectation: the value agents actually expect a variable to take in the future. This will be

the sum of agents' econometric forecast and their judgment. When taking the model to

the data, expectations are matched to median responses from the Survey of Professional

Forecasters.

Econometric forecast : a forecast for a future variable computed using least squares methods

and past data on the output gap, in�ation rate, and the federal funds rate.

Judgment : sometimes referred to as �add-factors� in the literature. A value that is added

to agents' econometric forecasts to re�ect their actual expectations of what is to come.

Judgment is a linear combination of structural shocks and judgment shocks.

Structural shocks or fundamental shocks : traditional stochastic shocks in the New Keynesian

model: a natural rate shock, a cost shock, and a monetary policy shock. Current values

of structural shocks a�ect macroeconomic dynamics but they have no in�uence on

agents' econometric forecasts. They may, however, in�uence judgment.

Judgment shocks : stochastic shocks to judgment that are independent of the structural

shocks.

2 Related Literature

The literature on learning speci�c to monetary economics can be broadly put into two cat-

egories: 1) theoretical work that examines stability of equilibria under learning versus ra-

tional expectations, and 2) empirical and descriptive research that examines the di�erence

in macroeconomic dynamics between learning and rational expectations. The �rst branch

explores the conditions for expectational stability, or E-stability, on monetary policy pa-

rameters. A model with learning that is E-stable will have expectations that converge to

the rational expectations equilibrium, within the neighborhood of the rational expectations

solution. Examples papers of this type are numerous, but include Bullard and Mitra (2002)

and (2007), Evans and Honkapohja (2003a) and (2003b), and Preston (2005), just to name

a few. These papers demonstrate that conditions on monetary policy for E-stability can be
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di�erent and more restrictive than conditions for determinacy (the relevant condition when

expectations are rational); the implication is that the economy can become unstable and

volatile if monetary policy strays from these restrictions.

Such concerns have motivated the second branch of literature which investigates whether

learning can explain macroeconomic dynamics we see in the data that is not well explained by

traditional rational expectations models. Orphanides and Williams (2005b) use a calibrated

model with learning to demonstrate that transient in�ation shocks can lead to �in�ation

scares�, prolonged periods of high in�ation. Findings like these suggests that learning can

explain macroeconomic persistence. Milani (2007) �nds evidence for this with an estimated

New Keynesian model with learning. He �nds learning can explain persistence in in�ation

and output without the need for common �mechanical� sources of persistence, such as habit

formation and in�ation indexation which are typically augmented to rational expectations

models. Learning has also been used to explain characteristics of the �Great In�ation�

and �Great Moderation�, the large run-up of in�ation and macroeconomic volatility in the

1970s followed by a long period of relatively moderate volatility and low in�ation since 1984.

Examples of such papers include Orphanides and Williams (2005a), Primiceri (2006), Bullard

and Eusepi (2005), and Bullard and Singh (2007).

Preceding this paper, relatively little work has investigated the importance of judgment

on expectations. Reifschneider, Stockton, and Wilcox (1997) and Svensson (2005) demon-

strate the usefulness of judgment for central bankers when making monetary policy decisions.

Bullard, Evans, and Honkapohja (2008) and (2010) incorporate judgment of the kind that is

purely disruptive (judgments depend exclusively on stochastic shocks that are independent

of economic fundamentals) into simple monetary models and demonstrate that judgment

can create �exuberance equilibria�, a condition that is susceptible to self-ful�lling judgments

even when an equilibrium is otherwise locally determinant and/or E-stable. They go on to

suggest appropriate monetary policy to prevent such unstable outcomes.

These papers by Bullard, Evans, and Honkapohja fall into the �rst branch of learning

literature mentioned above: they provide theoretical evidence that expectations formed by
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judgment and learning can lead to economic instability. The present work is the �rst attempt

to bring the issue to the second branch: to determine whether judgment with learning can

explain characteristics of business cycle �uctuations seen in data for the post-war United

States.

3 Model

Learning and judgment are examined within the context of a standard New Keynesian model,

a model that has been estimated at great length with rational expectations and learning to

investigate the roles stochastic shocks play in explaining macroeconomic dynamics.1 In this

section I describe the background and log-linearization of a rational expectations version of

the model. In the next section rational expectations are replaced with expectations formed

with learning and judgment.2

The model consists of three sectors that describe consumer behavior, producer behav-

ior under imperfectly �exible prices, and monetary policy. Optimal consumer behavior is

described by with a set of equations that determine current consumption based on past

consumption, interest rates, and expectations of future consumption and future in�ation.

Producer behavior is modeled with a �Phillips curve� which predicts the in�ation rate that

arises from �rm's optimal pricing strategies when subject to a pricing friction. The �nal

sector is monetary policy, which I assume to follow a standard Taylor rule where the central

bank sets a nominal interest rate which responds to expectations of future output and in-

�ation. These equations jointly determine the dynamics of the output gap (the percentage

di�erence between real GDP and potential GDP), the in�ation rate, and the nominal interest

rate.

1Notable examples using rational expectations include Ireland (2004a) and (2004b), Nason and Smith
(2005), and Smets and Wouters (2003), (2005), and (2007), just to name a few. Examples of estimated
DSGE models with learning include Milani (2007), Slobodyan and Wouters (2007) and (2008).

2This is perhaps the most common way to incorporate learning into dynamic macroeconomic models.
However, as Marcet and Sargent (1989) point out and Preston (2005) further demonstrates, this method is
not consistent with learning in the microfoundations of the model because the least squares expectations
operator does not follow the law of iterated expectations, a property that is assumed when solving the model.
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3.1 Consumers

There are a continuum of consumer types and a continuum of intermediate good producers,

each on the unit interval. Each consumer type has a speci�c type of labor skill that can

only be hired by a corresponding intermediate good �rm. It is assumed that there many

consumers of each type so that no consumer has market power over their wage. Moreover,

it is assumed that there are the same number of consumers in each type, so that the output

levels of intermediate goods do not depend on the distribution of consumer types. Di�erent

intermediate goods �rms may pay di�erent wages, so labor income may be di�erent for

each consumer type. To simplify the model, it is further assumed that there is a perfect

asset market so despite di�erences in labor income, all consumers choose the same level of

consumption.

Each consumer of type i ∈ (0, 1) chooses consumption, ct, labor supply, nt(i), and pur-

chases of real government bonds, bt(i), to maximize lifetime utility,

E0

∞∑
t=0

βt

 1

1− 1
σ

ξt (ct − ηct−1)1−
1
σ − 1

1 + 1
µ

nt(i)
1+ 1

µ

 , (1)

subject to the budget constraint,

ct + bt(i) =
1 + rt−1
1 + πt

bt−1(i) +
wt(i)

pt
nt(i) + Πt − τt. (2)

where ξt is an aggregate preference shock, wt(i)/pt is the real wage paid to type i labor; Πt is

the total value of pro�ts consumers earn by owning stock in �rms, and τt is the real value of

lump sum taxes. The preference parameters are the intertemporal elasticity of substitution,

denoted by σ ∈ (0,∞); the elasticity of labor supply, denoted by µ ∈ (0,∞); and the degree

of habit formation, denoted by η ∈ [0, 1). When the degree of habit formation is greater

than zero, consumers' utility from current consumption depends on their previous level of

consumption. Habit formation introduces persistence in consumption, and therefore output,
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which is commonly found in empirical studies of DSGE models.3

Log-linearizing consumers' �rst order conditions leads to the following log-linear Euler

equation,

λ̂t = Etλ̂t+1 + r̂t − Etπt+1, (3)

where λ̂t is the percentage deviation from the steady state of the Lagrange multiplier on

the budget constraint, (2), and is therefore interpreted as the marginal utility of real in-

come. A hat indicates the percentage deviation of a variable from its steady state.4 Utility

maximization leads to the following log-linear marginal utility of income,

λ̂t =
1

(1− βη)(1− η)

[
βησEtĉt+1 − σ(1 + βη2)ĉt + σηĉt−1

]
+
(
ξ̂t − βηEtξ̂t+1

)
. (4)

The marginal utility of income, (4), and the Euler equation, (3), make up the IS sector of

the model.

3.2 Producers

There is one �nal good used for consumption which is sold in a perfectly competitive market

and produced with a continuum of intermediate goods according to the production function,

yt =
[∫ 1

0
yt(i)

θ−1
θ di

] θ
θ−1

, (5)

where yt is the output of the �nal good, yt(i) is the output of intermediate good i, and

θ ∈ (1,∞) is the elasticity of substitution in production. Pro�t maximization leads to the

3For example, Smets and Wouters (2005) �nd point estimates of habit formation close to unity. Fur-
thermore, Fuhrer (2000) �nds that habit formation leads to �hump-shaped� impulse response functions, a
characteristic commonly supported by U.S. and European data. Milani (2007) �nds a signi�cant degree
of habit formation, but only under rational expectations. When estimating the model with constant gain
learning, he �nds an estimate for the degree of habit formation close to zero.

4A hat is omitted from πt because it is necessary to assume the steady state level of in�ation is equal to
zero when deriving the log-linear supply relationship.
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following demand for each intermediate good,

yt(i) =

[
pt(i)

pt

]−θ
yt, (6)

where pt(i) is the price of intermediate good i and pt is the price of the �nal good. Substi-

tuting equation (6) into equation (5) leads to the following expression for the price of the

�nal good in terms of the prices of intermediate goods,

pt =
[∫ 1

0
pt(i)

1−θdi
] 1

1−θ

. (7)

Each intermediate good is sold in a monopolistically competitive market and is produced

according to the production function, yt(i) = ztnt(i), where zt is an aggregate technology

shock. It can be shown that intermediate goods �rms' optimal choices for labor demand and

labor market clearing leads to the following aggregate log-linear marginal cost,

ψ̂t =
1

µ
ŷt − λ̂t −

(
1

µ
+ 1

)
ẑt. (8)

Firm's pricing conditions are subject to the Calvo (1983) pricing friction, where only a

constant fraction of �rms are able to re-optimize their price in a given period. The �rms

that are able to re-optimize their price is randomly determined, completely independently of

�rms' prices or any other characteristics or history. I suppose that �rms who are not able to

re-optimize their price do adjust their price by a fraction, γ ∈ [0, 1), of the previous period's

in�ation rate. A positive degree of price indexation introduces a source of persistence in

in�ation which is often found to be statistically signi�cant when estimating New Keynesian

models (see for example, Smets and Wouters (2003), (2005), (2007), and Milani (2007)).

Let ω ∈ (0, 1) denote the fraction of �rms that are not able to re-optimize their prices

every period. Since these �rms are randomly determined, ωT is the probability that a �rm

will not be able to re-optimize its price for T consecutive periods. A �rm who is able to

re-optimize chooses its price to maximize the following present discounted utility value of
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pro�ts earned while the �rm is unable to re-optimize its price again:

Et
∞∑
T=0

(ωβ)T
λt+T
λt

{(
pt(i)π

∗
t+T

pt+T

)
yt+T (i)−Ψ [yt+T (i)]

}
, (9)

where Ψ [yt+T (i)] is the real total cost function of producing yt+T (i) units, given the optimal

decision for labor, and π∗t+T ≡
∏T
j=1(1+γπt+j−1) is degree to which the �rm's price is able to

adjust according to in�ation indexation. It can be shown that the �rst order condition for

pt(i) combined with the �nal good price index, equation (7), leads to the log-linear Phillips

equation,5

πt =
1

1 + βγ

[
γπt−1 + βEtπt+1 +

µ(1− ω)(1− ωβ)

ω(µ+ θ)
ψ̂t

]
. (10)

3.3 Fully Flexible Prices

The IS equations and Phillips equation can be re-written in terms of the di�erence from the

outcome under fully �exible prices. This allows the model to be taken to data on the output

gap, the percentage deviation of real GDP from real potential GDP, as measured by the

Congressional Budget O�ce.

Let ỹt = ŷt − ŷft and λ̃t = λ̂t − λ̂ft denote the percentage deviation of output and

marginal utility from their fully �exible price outcomes, where a superscript f denotes the

outcome under fully �exible prices. Under �exible prices the linearized Euler equation, (3),

and marginal utility of income, (4), still hold. Using these conditions and imposing goods

market clearing that consumption is equal to output implies,

λ̃t = Etλ̃t+1 + r̂t − Etπt+1 − rnt , (11)

λ̃t =
1

(1− βη)(1− η)

[
βησEtỹt+1 − σ(1 + βη2)ỹt + σηỹt−1

]
, (12)

where rnt is the percentage deviation of the natural interest rate from its steady state. The

�natural interest rate� is the interest rate that would occur under fully �exible prices. I

5It is assumed during the log-linearization that there is a steady state for the price level, which implicitly
assumes the steady state level of in�ation is equal to zero.
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suppose that rnt follows the stochastic exogenous process,

rnt = ρnr
n
t−1 + εn,t, (13)

where εn,t is an independently and identically distributed shock.

When prices are fully �exible, it can be shown that intermediate goods �rms will all

choose the same price in a given period, and the marginal cost of production is constant,

and therefore always will be equal to its steady state value. Under fully �exible prices,

equation (8) implies,

ψ̂ft =
1

µ
ŷft − λ̂ft −

(
1

µ
+ 1

)
ẑt = 0.

One can solve this equation for ẑt and substitute it back into the equation for marginal

cost, (8). Plugging this expression for marginal cost into equation (10) yields the following

Phillips curve in terms of the output gap,

πt =
1

1 + βγ

[
γπt−1 + βEtπt+1 +

(1− ω)(1− ωβ)

ω(µ+ θ)
(ỹt − µλ̃t)

]
.

While this expression for the Phillips curve is not subject to a structural shock, when esti-

mating the model it is convenient to have a shock here to avoid the problem of stochastic

singularity. The Phillips curve is amended with a cost shock so the form to be estimated is

given by,

πt =
1

1 + βγ

[
γπt−1 + βEtπt+1 + κ(ỹt − µλ̃t) + ut

]
, (14)

where κ is the reduced form coe�cient on the marginal cost and ut is the exogenous cost

shock that evolves according to,

ut = ρuut−1 + εu,t, (15)

where εu,t is an independently and identically distributed shock.
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3.4 Monetary Policy

The nominal interest rate is determined jointly with output and in�ation by monetary policy.

In this paper I assume the monetary authority follows a Taylor (1993) type rule where the

interest rate is set in response to expected output and expected in�ation, with a preference

for interest rate smoothing, according to,

r̂t = ρrr̂t−1 + (1− ρr) (ψπEtπt+1 + ψyEtỹt+1) + εr,t (16)

where ρr ∈ [0, 1) is the degree of exogenous interest rate persistence, ψπ ∈ (0,∞) is the

degree to which monetary policy responds to expectations of future in�ation, ψy ∈ (0,∞)

is the degree to which monetary policy responds to the expected output gap, and εr,t is an

independently and identically distributed exogenous monetary policy shock with mean zero

and variance given by σ2
r .

Alternative policy rules may replace expected in�ation and output with current or lagged

realizations. For example, McCallum (1997) argues that a policy rule that depends on current

realizations of output and in�ation does not accurately depict actual information available

to central banks when monetary policy decisions are made, since it takes about a full quarter

to produce actual data on real GDP and price levels. He argues that the monetary policy

rule should instead be expressed as a function of past data. The Taylor rule in (16) is subject

to this criticism under rational expectations, since rational expectations depend on current

realizations of state variables and shocks. It is shown in the next section, however, that

expectations formed by least squares learning are functions of only past data.

3.5 Complete Model

The complete linear New Keynesian model is represented by the �IS relationship�, given in

equations (11) and (12); the Phillips curve in equation (14), and the Taylor rule in equation

(16). These equations determine the dynamics of the output gap (ỹt), the marginal utility of

income gap (λ̃t), the in�ation rate (πt), and the interest rate (r̂t). The model so far is subject
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to three structural shocks: the natural rate shock, the cost push shock, and the monetary

policy shock.

4 Expectations

4.1 Learning

The log-linearized model in the previous section can be expressed in the general form:

Ω0xt = Ω1xt−1 + Ω2x
e
t+1 + Ω2x

e
t+2 + Ψzt, (17)

zt = Azt−1 + εt (18)

where the notation xet+1 has replaced Etxt+1 to denote possibly non-rational expectations; xt

is a vector of minimum state variables, given by xt = [ỹt πt r̂t]
′, and zt is a vector of structural

shocks, given by zt = [rnt ut εr,t]
′. The variable λ̃t can be eliminated by substituting equation

(12) into equations (11) and (14), which leads to the inclusion of the two-period ahead

expectation for the output gap, Etỹt+2, in the IS equation. The minimum state variable

(MSV) solution under rational expectations is given by,

Etxt+1 = Gxt +HEtzt+1, (19)

where the elements of the matrices G and H are a function of the parameters of the model

and may be determined by the method of undetermined coe�cients. Agents that learn do

not know the the parameters that govern the economy, but do use this reduced form as their

forecasting model. Agents' information sets are restricted only to past data on xt, so they

are unable to collect data on past structural shocks to estimate matrix H.

In period t agents are able to assemble data sets only through period t − 1. At this

point the agents estimate G using least squares and use the model to make econometric

forecasts for future output and in�ation. There is no constant term in the general form of
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the model, equation (17), or in the rational expectation, given in equation (19), since all

variables are expressed in terms of percentage deviations from the steady state or �exible

price outcome. Since agents are not endowed with information about the parameters of the

model to determine steady state values, it is realistic to suppose that agents also estimate

a constant term in equation (19). Let Ĝ∗t denote agents' time t estimate for the columns

of matrix G and a column for a constant term so that Ĝ∗t = [ĝt Ĝt], where ĝt is the time t

estimate of the constant term.

If agents use ordinary least squares (OLS), then,

(
Ĝ∗t
)′

=

(
1

t− 1

t−1∑
τ=1

x∗τ−1x
∗
τ−1
′
)−1 (

1

t− 1

t−1∑
τ=1

x∗τ−1x
′
τ

)
, (20)

where x∗
′
t = [1 x′t] is the vector of explanatory variables including the constant. This equation

can be conveniently rewritten in the following recursive form:

Ĝ∗t = Ĝ∗t−1 + gt(xt−1 − Ĝ∗t−1x∗t−2)x∗t−2
′R−1t , (21)

Rt = Rt−1 + gt(x
∗
t−2x

∗
t−2
′ −Rt−1), (22)

where gt = 1/(t− 1) is the learning gain.6 The recursive form shows precisely how expecta-

tions are adaptive. The term enclosed in parentheses in equation (21) is the realized forecast

error using the previous estimate Ĝ∗t−1. The degree to which agents adjust their expectations

depends on the size of this forecast error, the variance of the estimated coe�cients, captured

by the inverse of matrix Rt, and the size of the learning gain, gt. The larger is the learning

gain, the more expectations respond to the latest forecast error. When agents use OLS, gt

approaches zero as time approaches in�nity. Under constant gain learning, gt remains at

some constant level, g, so the degree to which new observations can a�ect expectations is

always the same.

Agents use the least squares estimate of the coe�cients in G to form the econometric

6To show this, let Rt =
1
t−1

∑t−1
τ=1 x

∗
τ−1x

∗′
τ−1 and

(
Ĝ∗t

)′
= R−1t

(
1
t−1

∑t−1
τ=1 x

∗
τ−2x

′
τ−1

)
.
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forecasts,

E∗t xt+1 = ĝt + ĜtE
∗
t xt = (I + Ĝt)ĝt + Ĝ2

txt−1,

E∗t xt+2 = ĝt + ĜtE
∗
t xt+1 =

[
I + Ĝt(I + Ĝt)

]
ĝt + Ĝ3

txt−1,

(23)

where E∗t denotes expectation that is equal to the econometric forecast.

4.2 Judgment

Agents are not able to collect realizations of stochastic shocks, zt, in their forecasts.7 How-

ever, current events may reveal some noisy information about structural shocks, which be-

comes part of judgment when forming expectations. Examples of such events may be the

announcement of technological innovations, natural disasters, onset of war or political in-

stability among trading partners, changes in weather e�ecting agricultural production, etc.

The news of such events cannot be instantly mapped to data to make econometric fore-

casts, but it is nonetheless valuable information when forming expectations. Let agents'

�nal expectations be the following sum of the econometric forecast given in equation (23)

and judgment,

xet+1 = E∗t xt+1 + ηt, (24)

where ηt is an appropriately sized vector whose non-zero elements are values for judgment

concerning the future output gap (ηy,t) and future in�ation rate (ηπ,t). The judgment vec-

tor depends on current events that includes some information about zt, but it also includes

expectational shocks, its own stochastic component that is independent of economic funda-

7Central banks do use a number of such sophisticated models that incorporate the presence of latent
structural shocks when forming forecasts. Reifschneider, Stockton, and Wilcox (1997) and Svensson (2005)
point out that judgment is nonetheless an important component of central bank expectations and decisions.
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mentals. Let judgment evolve according to,

ηt = Φzt + ζt,

ζy,t = ρζ,yζy,t−1 + ξy,t,

ζπ,t = ρζ,πζπ,t−1 + ξπ,t,

(25)

where matrix Φ captures the degree to which judgment successfully picks up information

about structural shocks and ζt is a vector of autocorrelated disturbances to the judgment

variables. The second and third equations allow these disturbances to be autocorrelated

so that agents' ill-informed judgment about a particular variable may persist for multiple

quarters depending on the parameters ρζ,y and ρζ,y. The judgment shocks ξy,t and ξπ,t are

independently and normally distributed with mean zero and standard deviation given by

σξ,y and σξ,π, respectively.

The structural form for evolution of judgment in equation (25) is quite general and allows

as special cases common speci�cations for expectations in DSGE models. If ρzeta,y = ρζ,y = 0

and V ar(ξy,t) = V ar(ξπ,t) = 0 then expectations are not subject to judgment shocks. If

Φ = 0, then stochastic shocks are always unobservable when forming expectations, which

is a common assumption among empirical learning papers. If Φ = HA, where H is the

coe�cient on expected shocks in the MSV solution in equation (19) and A is the degree of

persistence of structural shocks given in (18), then agents are capable of observing quantities

for structural shocks and the in�uence these shocks have on expectations is equal to the

rational expectations solution. In fact, the entire model encompasses rational expectations

as a special case when these conditions are met, the learning gain is equal to zero (g = 0),

and the initial condition for learning coe�cients, G∗t in equation (21), is consistent with the

MSV solution, G in equation (19). This initial condition is estimated using pre-sample data

as described in the next section, and all other parameters mentioned here are estimated

jointly with the New Keynesian structural parameters, so this framework can be viewed as

quite unrestricted.
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5 Estimation

The model is estimated using U.S. quarterly data from 1968:Q3 through 2007:Q1 on the

output gap (percentage di�erence between real GDP reported by the Bureau of Economic

Analysis and the measure of potential real GDP from the Congressional Budget O�ce), the

in�ation rate of the GDP de�ator, and the Federal Funds Rate. Quarterly data from the

same period on one quarter ahead expectations from the Survey of Professional Forecasters

is also used to help identify the parameters of the learning and judgment process. The

median responses were obtained for the one quarter ahead forecast for real GDP and the

GDP de�ator. The expectation for the output gap is found by computing the percentage

di�erence between the forecast for real GDP and the CBO estimate for potential GDP

in the next quarter. The expectation for in�ation is found by computing the percentage

di�erence between the forecast for the GDP de�ator next period and the current GDP

de�ator. The base year used for the forecasts from the Survey of Professional Forecasters

changes throughout the sample, so the data was �rst appropriately rescaled.

5.1 State Space Representation

Equations (17), (18), (21), (22), (23), and (25) can be combined into following single state

equation convenient for evaluating a Kalman �lter,8

st = ft + Ftst−1 + vt (26)

where st = [ỹt πt r̂t ỹ
e
t+1 ỹ

e
t+2 π

e
t+1 ηy,t ηπ,t r

n
t ut ζy,t ζπ,t]

′ is a vector of state variables, and

vt = [εn,t εu,t εr,t ξy,t ξπ,t] is a vector of all the independently and identically distributed

8Habit formation causes the two period ahead expectation, ỹet+2 to appear in the model, which in turn
requires an evaluating a time t expectation for judgment ηy,t+1. For simplicity, I suppose this judgment is
formed using the mathematical expectation operator on the equations in (25), advanced to period t+1. This
implies that when using judgment for expectations two periods ahead, agents already discount this judgment
depending on the degree of persistence, ρζ,y; and the degree to which stochastic shocks zt impact judgment
two periods ahead is determined by the actual degree of persistence dictated persistence of the natural rate
and cost-push shocks (given by parameters ρn and ρu).
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stochastic shocks. The time-varying component of vector ft and matrix Ft comes from

the coe�cients in ĝt and Ĝt determined by the learning process in (23). Since ft and Ft

depend only on lagged realizations of some of the state variables, they can be treated as

predetermined when evaluating the Kalman �lter.

Let GAPt denote the data on the output gap, INFt denote data on in�ation, FFt denote

data on the Federal Funds Rate, and SPF_GAPt and SPF_INFt denote data on expected

one-quarter ahead output gap and in�ation rate, respectively, implied by the Survey of

Professional Forecasters. The observation equations are given by,

GAPt = 100ỹt,

INFt = π∗ + 400πt,

FFt = r∗ + π∗ + 400r̂t.

SPF_GAPt = 100ỹet+1,

SPF_INFt = π∗ + 400πet+1.

(27)

The state variables are multiplied by 100 to convert decimals to percentages, and the in�ation

rate, expected in�ation rate, and federal funds rate are multiplied by 4 to convert quarterly

rates to annualized rates. The New Keynesian model assumes that the steady state in�ation

rate is equal to zero, but since this is not likely the case in the data, the annualized steady

state in�ation rate, given by π∗, is included in the observation equations above. The steady

state gross real interest rate is set equal to the inverse of the discount factor; therefore

r∗ = 400(1− 1/β). These steady state parameters are calibrated to π∗ = 3.4 and β = 0.9956

so the steady state values match the average in�ation rate and nominal interest rate in the

sample.

5.2 Initial Conditions

Aside from standard initial conditions for the Kalman �lter, it is necessary to specify initial

conditions for Ĝ∗0 and R0, the initial values for learning process given in equations (21) and

(22). I use pre-sample data from 1954:Q2 through 1968:Q2 on the output gap, in�ation rate,
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and federal funds rate and and transform these into the same terms as the state vector, xt,

according to,

ỹt =
1

100
GAPt,

πt =
1

400
(INFt − π∗),

r̂t =
1

400
(FFt − r∗ − π∗).

I estimate a VAR(1) (the same reduced form as used in the least squared learning process

described in Section 4) on this data using ordinary least squares to set initial values for

the learning matrices. The coe�cients from the regression are used to initialize Ĝ∗0, and the

elements from the sum of squares component of the estimate of the variance of the coe�cients

is used to initialize R0.

5.3 Bayesian Estimation

Table 1 lists the parameters to be estimated, along with the prior distribution imposed for

Bayesian estimation. The parameters include the learning gain, the parameters of the New

Keynesian Model described in Section 3, the coe�cients Φ in equation (25) governing how

stochastic shocks informatively impact judgment, the persistence of stochastic components

to judgment, also in equation (25), and the standard deviation of the structural shocks and

judgment shocks.

The model is estimated with Bayesian methods using the Metropolis-Hastings algorithm.

The vector of parameters were drawn from the posterior distribution 400,000 times and the

�rst 100,000 draws were discarded for a burn-in period. Table 1 shows the prior distributions

used for the estimation. The prior distributions for the New Keynesian parameters are similar

to others used in the literature. The prior mean for the learning gain is set to 0.02, with a

rather large standard deviation of 0.03 which allows for a wide range for learning dynamics.

The value of the learning gain two standard deviations above the mean is 0.08, which means

agents econometric estimates evolve very quickly and the approximate sample size agents to

develop their econometric estimates is only 0.08−1 = 12.5 (just over 3 years of data). The
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large standard deviation for the prior on the learning gain also allows for a relatively large

probability that the learning gain is close to zero, implying agents use a very large number

of observations and agents adjust their econometric estimates only very slowly. Finally,

the prior distributions for the coe�cients in judgment process are intentionally made very

wide in recognition that no previous literature has attempted to measure or even discuss

such coe�cients. The priors for these coe�cients are normal with zero mean and standard

deviation equal to 4.0.

6 Results

6.1 Parameters

The prior and posterior distributions for the parameters are listed in Table 2. The last three

columns present the median, 5th percentile and 95th percentile of the posterior distributions

for the parameters. The estimate for the learning gain is found to be 0.0322 with a relatively

tight posterior distribution relative to the prior. This implies that agents use approximately

0.0322−1 = 31.06 observations for forming least squares forecasts, which corresponds to about

7.75 years. This is a magnitude similar to that found by Milani (2007), and Slobodyan and

Wouters (2007) and (2008). Habit formation is found to be a signi�cant source of persistence,

with an estimate η = 0.6871. Price indexation is found to be less important in explaining

persistence with an estimate γ = 0.2462. Other signi�cant sources of persistence come from

the natural rate shock (ρn = 0.95), cost shock (ρu = 0.78), and the persistence of disturbances

to judgment on output and in�ation, with ρζ,y = 0.94 and ρζ,π = 0.89, respectively. Only the

preference parameters σ and µ are poorly identi�ed by the data; these posterior distributions

largely mirror the priors.
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6.2 Judgment

The posterior distributions for the coe�cients in Φ for the judgment process are very sig-

ni�cantly informed by the data; these posterior distributions are considerably tight given

the very wide prior distributions. Recall the parameters in Φ determine how much judg-

ment depends on actual stochastic shocks. Using equation (25), the variance of judgment

can be decomposed into variance caused by structural parameters (informed judgment) and

variance from the independent stochastic component (judgment shocks) as follows,

V ar(ηt) = ΦV ar(zt)Φ
′ + V ar(ζt). (28)

Both zt and ζt are autoregressive stochastic processes whose variances depend on the vari-

ances for the shocks. To illustrate, the variance for zt can be derived from the variance of the

underlying independently and identically distributed shocks using equation (18) as follows,

V ar(zt) = AV ar(zt−1)A
′ + V ar(εt)

Since the variance of zt does not depend on time, we can solve for this variance using the

vec() operator on both sides of this equation,

vec(V ar(zt)) = A⊗ Avec(V ar(zt)) + vec(V ar(εt)).

Solving leads to the expression,

vec(V ar(zt)) = (I − A⊗ A)−1vec(V ar(εt)). (29)

The o�-diagonal elements of V ar(εt) are zero, and the diagonal elements are given by squares

of σn, σu, and σr, whose estimates are reported in Table 2. The output vec(V ar(zt)) is then

appropriately re-sized to yield V ar(zt) to substitute into equation (28). A symmetric exercise

performed on the autoregressive equations in (25) yields V ar(ζt).
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Given the estimates for these variances, equation (??) can be used to determine what

percentage of the variability in judgment depends on structural shocks and judgment shocks.

Table 3 reports these results. About 85% of the variability judgment in output is explained

by the variance of the shock to judgment and the remaining 15% of variability is explained

primarily by the variance of the natural rate shock. This implies judgment on output is

primarily ill-informed: only a small amount of judgment is based on information related to

fundamentals in the economy. The second column of Table 3 shows the result is very similar

for judgment regarding in�ation. About 62% of the judgment in in�ation is ill-informed, and

the remaining 38% depends on information from the cost shock. The impact of monetary

policy shocks on judgment of both variables was essentially equal to zero.

Its interesting that both the natural rate shock and cost shock help inform judgment, but

strangely, the natural rate shock is not used for judgments regarding in�ation, and the cost

shock is not used for judgments regarding output. Both of these shocks in�uence output and

in�ation in equilibrium - yet agents mistakenly believe that cost shocks only drive in�ation,

and natural rate shocks only drive output.

6.3 Impulse Responses

Impulse response functions cannot be computed in quite the same way in models with learn-

ing as models with rational expectations. Learning adds a non-linearity to the model: the

coe�cients on the state equation, (26), have a time t subscript which depend on the state of

the state of the learning process, represented by matrices Ĝ∗t and Rt in equations (21) and

(22), respectively. The responses to structural shocks depend on the state of the learning

process and are therefore time-dependent. Moreover, unlike a rational expectations model, a

model with learning evolves absent of any shocks when learning matrices Ĝ∗t and Rt are away

from the rational expectations solution. Expectations continue to evolve with new incoming

data, causing movements in output, in�ation, and interest rates even when all shocks are
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set equal to zero.9 To identify the impact a shock has in this ever-changing environment, I

simulate the model using the state equation (26) with all shocks for all time periods set to

zero. I then simulate the model with a one standard deviation impulse shock. In the �rst

period only one shock is set equal to its standard deviation and all other shocks are set to

zero for all other time periods. The di�erence between these two simulations is the impulse

response function.

Figure 1 shows the responses to the output gap and in�ation rate from a one standard de-

viation shock to output judgment (ξy,t) and in�ation judgment (ξπ,t). The impulse responses

show the output gap and in�ation increase in response to a shock in output judgment. A

positive shock to output judgment means that agents believe there will be higher output in

the future. This judgment is somewhat self ful�lling as agents increase their current demand

for consumption, causing the increase in the output gap and also in�ation.

Close inspection of the three-dimensional impulse responses reveal there are periods in

which the responses to the judgment shocks are relatively more severe. Figure 2 shows an

easier to read, two-dimensional, summary of the impulse response functions over time. For

each time period, the overall size of a single impulse response function is summarized by

a single number by computing the root mean squared response over the �rst four quarters

(dotted line, left-side scale) of the response and again over the �rst sixteen quarters (solid

line, right-side scale) of the response. The plots indicate the responses of a one-standard

deviation output judgment shock were most severe in the recessions of the early 1980s and

early part of the 2000s. The impacts of a one standard deviation in�ation judgment shock

were more severe over the �rst half of the sample, with spikes occurring during the recessions

in the early 1980s, and following the recessions in 1991 and 2001.

Figure 3 shows the responses to the output gap and in�ation rate from a one standard

deviation shock to the New Keynesian model structural shocks: natural rate shock, cost

shock, and monetary policy shock. The impulse responses move in the expected direction.

The natural rate shock is subtracted from expected real interest rate in the Euler equation,

9When the model is E-stable and in the neighborhood of the rational expectations solution, then absent
of shocks Ĝ∗t and Rt trend towards the rational expectations solution over time.
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(11), which causes a decrease in desire to save and therefore an increase in demand for

consumption. The impulse response functions therefore show positive responses in the output

gap and in�ation rate. The cost shock increases the in�ation rate, also causing a decrease in

the incentive to save and causing a positive response to the output gap. A positive monetary

policy shock is associated with monetary policy tightening, which causes the output gap and

in�ation rate to decrease in response.

Again, the impulse response functions show the severity from impulses to structural

shocks changes over the sample period. Figure 4 shows the root mean squared impulse

responses over the sample period for the �rst four (dotted line, left-side scale) and sixteen

periods (solid line, right-side scale) following the shock. Like the output judgment shock, the

impact of a one standard deviation natural rate shock is most severe during the recessions

in the early 1980s and again following the recession in 2001. The impact of the cost shock

and monetary policy shock decline over the sample period.

To compare the relative importance of the judgment shocks and structural shocks, Table

4 reports the sample period average of the root mean squared responses illustrated in Figures

1 and 3. The output judgment shock has the largest impulse response on the output gap.

A one standard deviation shock to output judgment has an average (root mean squared)

impact on the output gap equal to 1.3% over the �rst four quarters following the shock, and

1.06% over the �rst sixteen quarters. The next biggest shocks a�ecting the output gap are

the monetary policy shock and the natural rate shock. The in�ation judgment shock also

has important impacts on in�ation four-quarter and sixteen-quarter impulse responses and

are in similar magnitude as the other shocks.

7 Conclusion

Rational expectations is a prominent assumption used in evaluating economic issues analyzed

with DSGE models, but in reality people consider statistical forecasts then use judgment

when forming their actual expectations. I estimate a standard New Keynesian model using
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data on the output gap, in�ation rate, and interest rates along with data on expectations

from the Survey of Professional Forecasters. Fundamental structural shocks in the model

include the natural rate shock, cost shock, and monetary policy shock. I allow judgment

to be based on these shocks, indicating judgment can be informed by current fundamental

shocks, but it can also be subject to its own stochastic disturbances that are orthogonal

to current structural shocks and past state variables. Stochastic shocks to judgment is

found to be a signi�cant source of economic persistence and economic volatility in U.S.

history. Furthermore, judgment is found to be determined primarily by its own stochastic

disturbances; very little of the variability in judgment is shown to depend on fundamental

shocks.
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Table 3: Judgment Variance Decomposition

Stochastic Shock Judgment Output (%) Judgment In�ation (%)
Natural Rate Shock 14.93 0.08
Cost Shock 0.25 38.34
Monetary Policy Shock 0.00 0.00
Output Judgment Shock 84.82 �
In�ation Judgment Shock � 61.58
Total 100.00 100.00

Table 4: Average Root Mean Squared Impulse Responses

First Four Periods of IRF First Sixteen Periods of IRF
Shock Output Gap In�ation Output Gap In�ation
Natural Rate 0.6018 0.1981 0.9918 0.6533
Cost Shock 0.1697 1.0864 0.1870 0.6953
Monetary Policy 0.6364 0.1787 0.7742 0.4854
Output Judgment 1.2952 0.3662 1.0627 0.6060
In�ation Judgment 0.2911 0.3029 0.3353 0.4694
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Figure 1: Impulse Response Functions: Judgment Shocks
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Figure 2: Root Mean Squared Response to Judgment Shocks
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Figure 3: Impulse Response Functions: Structural Shocks
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Figure 4: Root Mean Squared Response Structural Shocks
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